Download or read book Reliability of Electronic Components written by Titu I. Bajenescu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This application-oriented professional book explains why components fail, addressing the needs of engineers who apply reliability principles in design, manufacture, testing and field service. A detailed index, a glossary, acronym lists, reliability dictionaries and a rich specific bibliography complete the book.
Download or read book Reliability Control for Electronic Systems written by Lacombe and published by CRC Press. This book was released on 1999-05-14 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Demonstrates how electronic products manufacturers can improve the effectiveness and longevity of their finished products, building in reliability at the design state and more efficiently monitoring and controlling it throughout practice. The text addresses management personnel in small- and medium-sized electronics manufacturing concerns.
Download or read book Reliability and Failure of Electronic Materials and Devices written by Milton Ohring and published by Academic Press. This book was released on 2014-10-14 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites
Download or read book Reliable Design of Electronic Equipment written by Dhanasekharan Natarajan and published by Springer. This book was released on 2014-08-02 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains reliability techniques with examples from electronics design for the benefit of engineers. It presents the application of de-rating, FMEA, overstress analyses and reliability improvement tests for designing reliable electronic equipment. Adequate information is provided for designing computerized reliability database system to support the application of the techniques by designers. Pedantic terms and the associated mathematics of reliability engineering discipline are excluded for the benefit of comprehensiveness and practical applications. This book offers excellent support for electrical and electronics engineering students and professionals, bridging academic curriculum with industrial expectations.
Download or read book Reliability Technology written by Norman Pascoe and published by John Wiley & Sons. This book was released on 2011-03-08 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique book that describes the practical processes necessary to achieve failure free equipment performance, for quality and reliability engineers, design, manufacturing process and environmental test engineers. This book studies the essential requirements for successful product life cycle management. It identifies key contributors to failure in product life cycle management and particular emphasis is placed upon the importance of thorough Manufacturing Process Capability reviews for both in-house and outsourced manufacturing strategies. The readers? attention is also drawn to the many hazards to which a new product is exposed from the commencement of manufacture through to end of life disposal. Revolutionary in focus, as it describes how to achieve failure free performance rather than how to predict an acceptable performance failure rate (reliability technology rather than reliability engineering) Author has over 40 years experience in the field, and the text is based on classroom tested notes from the reliability technology course he taught at Massachusetts Institute of Technology (MIT), USA Contains graphical interpretations of mathematical models together with diagrams, tables of physical constants, case studies and unique worked examples
Download or read book Reliability of Power Electronic Converter Systems written by Henry Shu-hung Chung and published by IET. This book was released on 2015-12-07 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aims of power electronic converter systems (PECS) are to control, convert, and condition electrical power flow from one form to another through the use of solid state electronics. This book outlines current research into the scientific modeling, experimentation, and remedial measures for advancing the reliability, availability, system robustness, and maintainability of PECS at different levels of complexity.
Download or read book AI Techniques for Reliability Prediction for Electronic Components written by Bhargava, Cherry and published by IGI Global. This book was released on 2019-12-06 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the industry of manufacturing and design, one major constraint has been enhancing operating performance using less time. As technology continues to advance, manufacturers are looking for better methods in predicting the condition and residual lifetime of electronic devices in order to save repair costs and their reputation. Intelligent systems are a solution for predicting the reliability of these components; however, there is a lack of research on the advancements of this smart technology within the manufacturing industry. AI Techniques for Reliability Prediction for Electronic Components provides emerging research exploring the theoretical and practical aspects of prediction methods using artificial intelligence and machine learning in the manufacturing field. Featuring coverage on a broad range of topics such as data collection, fault tolerance, and health prognostics, this book is ideally designed for reliability engineers, electronic engineers, researchers, scientists, students, and faculty members seeking current research on the advancement of reliability analysis using AI.
Download or read book Control Systems Safety Evaluation and Reliability written by William M. Goble and published by . This book was released on 1998 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Dependability in Electronic Systems written by Nobuyasu Kanekawa and published by Springer Science & Business Media. This book was released on 2010-11-08 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the practical application of dependable electronic systems in real industry, such as space, train control and automotive control systems, and network servers/routers. The impact from intermittent errors caused by environmental radiation (neutrons and alpha particles) and EMI (Electro-Magnetic Interference) are introduced together with their most advanced countermeasures. Power Integration is included as one of the most important bases of dependability in electronic systems. Fundamental technical background is provided, along with practical design examples. Readers will obtain an overall picture of dependability from failure causes to countermeasures for their relevant systems or products, and therefore, will be able to select the best choice for maximum dependability.
Download or read book Reliability of Safety Critical Systems written by Marvin Rausand and published by John Wiley & Sons. This book was released on 2014-03-03 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the theory and methodology for reliability assessments of safety-critical functions through examples from a wide range of applications Reliability of Safety-Critical Systems: Theory and Applications provides a comprehensive introduction to reliability assessments of safety-related systems based on electrical, electronic, and programmable electronic (E/E/PE) technology. With a focus on the design and development phases of safety-critical systems, the book presents theory and methods required to document compliance with IEC 61508 and the associated sector-specific standards. Combining theory and practical applications, Reliability of Safety-Critical Systems: Theory and Applications implements key safety-related strategies and methods to meet quantitative safety integrity requirements. In addition, the book details a variety of reliability analysis methods that are needed during all stages of a safety-critical system, beginning with specification and design and advancing to operations, maintenance, and modification control. The key categories of safety life-cycle phases are featured, including strategies for the allocation of reliability performance requirements; assessment methods in relation to design; and reliability quantification in relation to operation and maintenance. Issues and benefits that arise from complex modern technology developments are featured, as well as: Real-world examples from large industry facilities with major accident potential and products owned by the general public such as cars and tools Plentiful worked examples throughout that provide readers with a deeper understanding of the core concepts and aid in the analysis and solution of common issues when assessing all facets of safety-critical systems Approaches that work on a wide scope of applications and can be applied to the analysis of any safety-critical system A brief appendix of probability theory for reference With an emphasis on how safety-critical functions are introduced into systems and facilities to prevent or mitigate the impact of an accident, this book is an excellent guide for professionals, consultants, and operators of safety-critical systems who carry out practical, risk, and reliability assessments of safety-critical systems. Reliability of Safety-Critical Systems: Theory and Applications is also a useful textbook for courses in reliability assessment of safety-critical systems and reliability engineering at the graduate-level, as well as for consulting companies offering short courses in reliability assessment of safety-critical systems.
Download or read book Reliability Characterisation of Electrical and Electronic Systems written by Jonathan Swingler and published by Woodhead Publishing. This book was released on 2020-11-15 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book charts how reliability engineering has moved from the use of sometimes arbitrary standards to an empirical scientific approach of understanding operating conditions, failure mechanisms, the need for testing for a more realistic characterisation and, new for the second edition, includes the monitoring of performance/robustness in the field. Reliability Characterisation of Electrical and Electronic Systems brings together a number of experts and key players in the discipline to concisely present the fundamentals and background to reliability theory, elaborate on the current thinking and developments behind reliability characterisation, and give a detailed account of emerging issues across a wide range of applications. The second edition has a new section titled Reliability Condition Monitoring and Prognostics for Specific Application which provides a guide to critical issues in key industrial sectors such as automotive and aerospace. There are also new chapters on areas of growing importance such as reliability methods in high-temperature electronics and reliability and testing of electric aircraft power systems. Reviews emerging areas of importance such as reliability methods in high-temperature electronics and reliability testing of electric vehicles Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating conditions, failure mechanisms and the need for testing
Download or read book Component Reliability for Electronic Systems written by Titu I. Băjenescu and published by Artech House. This book was released on 2010 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main reason for the premature breakdown of today's electronic products (computers, cars, tools, appliances, etc.) is the failure of the components used to build these products. Today professionals are looking for effective ways to minimize the degradation of electronic components to help ensure longer-lasting, more technically sound products and systems. This practical book offers engineers specific guidance on how to design more reliable components and build more reliable electronic systems. Professionals learn how to optimize a virtual component prototype, accurately monitor product reliability during the entire production process, and add the burn-in and selection procedures that are the most appropriate for the intended applications. Moreover, the book helps system designers ensure that all components are correctly applied, margins are adequate, wear-out failure modes are prevented during the expected duration of life, and system interfaces cannot lead to failure.
Download or read book System Reliability Toolkit written by David Nicholls and published by RIAC. This book was released on 2005 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Next Generation HALT and HASS written by Kirk A. Gray and published by John Wiley & Sons. This book was released on 2016-03-11 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next Generation HALT and HASS presents a major paradigm shift from reliability prediction-based methods to discovery of electronic systems reliability risks. This is achieved by integrating highly accelerated life test (HALT) and highly accelerated stress screen (HASS) into a physics-of-failure-based robust product and process development methodology. The new methodologies challenge misleading and sometimes costly mis-application of probabilistic failure prediction methods (FPM) and provide a new deterministic map for reliability development. The authors clearly explain the new approach with a logical progression of problem statement and solutions. The book helps engineers employ HALT and HASS by illustrating why the misleading assumptions used for FPM are invalid. Next, the application of HALT and HASS empirical discovery methods to quickly find unreliable elements in electronics systems gives readers practical insight to the techniques. The physics of HALT and HASS methodologies are highlighted, illustrating how they uncover and isolate software failures due to hardware-software interactions in digital systems. The use of empirical operational stress limits for the development of future tools and reliability discriminators is described. Key features: * Provides a clear basis for moving from statistical reliability prediction models to practical methods of insuring and improving reliability. * Challenges existing failure prediction methodologies by highlighting their limitations using real field data. * Explains a practical approach to why and how HALT and HASS are applied to electronics and electromechanical systems. * Presents opportunities to develop reliability test discriminators for prognostics using empirical stress limits. * Guides engineers and managers on the benefits of the deterministic and more efficient methods of HALT and HASS. * Integrates the empirical limit discovery methods of HALT and HASS into a physics of failure based robust product and process development process.
Download or read book Failure Analysis written by Marius Bazu and published by John Wiley & Sons. This book was released on 2011-03-08 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Failure analysis is the preferred method to investigate product or process reliability and to ensure optimum performance of electrical components and systems. The physics-of-failure approach is the only internationally accepted solution for continuously improving the reliability of materials, devices and processes. The models have been developed from the physical and chemical phenomena that are responsible for degradation or failure of electronic components and materials and now replace popular distribution models for failure mechanisms such as Weibull or lognormal. Reliability engineers need practical orientation around the complex procedures involved in failure analysis. This guide acts as a tool for all advanced techniques, their benefits and vital aspects of their use in a reliability programme. Using twelve complex case studies, the authors explain why failure analysis should be used with electronic components, when implementation is appropriate and methods for its successful use. Inside you will find detailed coverage on: a synergistic approach to failure modes and mechanisms, along with reliability physics and the failure analysis of materials, emphasizing the vital importance of cooperation between a product development team involved the reasons why failure analysis is an important tool for improving yield and reliability by corrective actions the design stage, highlighting the ‘concurrent engineering' approach and DfR (Design for Reliability) failure analysis during fabrication, covering reliability monitoring, process monitors and package reliability reliability resting after fabrication, including reliability assessment at this stage and corrective actions a large variety of methods, such as electrical methods, thermal methods, optical methods, electron microscopy, mechanical methods, X-Ray methods, spectroscopic, acoustical, and laser methods new challenges in reliability testing, such as its use in microsystems and nanostructures This practical yet comprehensive reference is useful for manufacturers and engineers involved in the design, fabrication and testing of electronic components, devices, ICs and electronic systems, as well as for users of components in complex systems wanting to discover the roots of the reliability flaws for their products.
Download or read book Design for Reliability written by Dev G. Raheja and published by John Wiley & Sons. This book was released on 2012-07-20 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique, design-based approach to reliability engineering Design for Reliability provides engineers and managers with a range of tools and techniques for incorporating reliability into the design process for complex systems. It clearly explains how to design for zero failure of critical system functions, leading to enormous savings in product life-cycle costs and a dramatic improvement in the ability to compete in global markets. Readers will find a wealth of design practices not covered in typical engineering books, allowing them to think outside the box when developing reliability requirements. They will learn to address high failure rates associated with systems that are not properly designed for reliability, avoiding expensive and time-consuming engineering changes, such as excessive testing, repairs, maintenance, inspection, and logistics. Special features of this book include: A unified approach that integrates ideas from computer science and reliability engineering Techniques applicable to reliability as well as safety, maintainability, system integration, and logistic engineering Chapters on design for extreme environments, developing reliable software, design for trustworthiness, and HALT influence on design Design for Reliability is a must-have guide for engineers and managers in R&D, product development, reliability engineering, product safety, and quality assurance, as well as anyone who needs to deliver high product performance at a lower cost while minimizing system failure.
Download or read book High Temperature Electronics written by F. Patrick McCluskey and published by CRC Press. This book was released on 1996-12-13 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of electronics that can operate at high temperatures has been identified as a critical technology for the next century. Increasingly, engineers will be called upon to design avionics, automotive, and geophysical electronic systems requiring components and packaging reliable to 200 °C and beyond. Until now, however, they have had no single resource on high temperature electronics to assist them. Such a resource is critically needed, since the design and manufacture of electronic components have now made it possible to design electronic systems that will operate reliably above the traditional temperature limit of 125 °C. However, successful system development efforts hinge on a firm understanding of the fundamentals of semiconductor physics and device processing, materials selection, package design, and thermal management, together with a knowledge of the intended application environments. High Temperature Electronics brings together this essential information and presents it for the first time in a unified way. Packaging and device engineers and technologists will find this book required reading for its coverage of the techniques and tradeoffs involved in materials selection, design, and thermal management and for its presentation of best design practices using actual fielded systems as examples. In addition, professors and students will find this book suitable for graduate-level courses because of its detailed level of explanation and its coverage of fundamental scientific concepts. Experts from the field of high temperature electronics have contributed to nine chapters covering topics ranging from semiconductor device selection to testing and final assembly.