EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming

Download or read book Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming written by Ivo Nowak and published by Springer Science & Business Media. This book was released on 2006-03-28 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinearoptimizationproblemscontainingbothcontinuousanddiscretevariables are called mixed integer nonlinear programs (MINLP). Such problems arise in many ?elds, such as process industry, engineering design, communications, and ?nance. There is currently a huge gap between MINLP and mixed integer linear programming(MIP) solvertechnology.With a modernstate-of-the-artMIP solver itispossibletosolvemodelswithmillionsofvariablesandconstraints,whereasthe dimensionofsolvableMINLPsisoftenlimitedbyanumberthatissmallerbythree or four orders of magnitude. It is theoretically possible to approximate a general MINLP by a MIP with arbitrary precision. However, good MIP approximations are usually much larger than the original problem. Moreover, the approximation of nonlinear functions by piecewise linear functions can be di?cult and ti- consuming. In this book relaxation and decomposition methods for solving nonconvex structured MINLPs are proposed. In particular, a generic branch-cut-and-price (BCP) framework for MINLP is presented. BCP is the underlying concept in almost all modern MIP solvers. Providing a powerful decomposition framework for both sequential and parallel solvers, it made the success of the current MIP technology possible. So far generic BCP frameworks have been developed only for MIP, for example,COIN/BCP (IBM, 2003) andABACUS (OREAS GmbH, 1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have to be taken into account: • A given (sparse) MINLP is reformulated as a block-separable program with linear coupling constraints.The block structure makes it possible to generate Lagrangian cuts and to apply Lagrangian heuristics. • In order to facilitate the generation of polyhedral relaxations, nonlinear c- vex relaxations are constructed. • The MINLP separation and pricing subproblems for generating cuts and columns are solved with specialized MINLP solvers.

Book Mixed Integer Nonlinear Programming

Download or read book Mixed Integer Nonlinear Programming written by Jon Lee and published by Springer Science & Business Media. This book was released on 2011-12-02 with total page 687 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.

Book Disjunctive Programming

Download or read book Disjunctive Programming written by Egon Balas and published by Springer. This book was released on 2018-11-27 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.

Book Convexification and Global Optimization in Continuous and Mixed Integer Nonlinear Programming

Download or read book Convexification and Global Optimization in Continuous and Mixed Integer Nonlinear Programming written by Mohit Tawarmalani and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in constrained optimization originated with the simple linear pro gramming model since it was practical and perhaps the only computationally tractable model at the time. Constrained linear optimization models were soon adopted in numerous application areas and are perhaps the most widely used mathematical models in operations research and management science at the time of this writing. Modelers have, however, found the assumption of linearity to be overly restrictive in expressing the real-world phenomena and problems in economics, finance, business, communication, engineering design, computational biology, and other areas that frequently demand the use of nonlinear expressions and discrete variables in optimization models. Both of these extensions of the linear programming model are NP-hard, thus representing very challenging problems. On the brighter side, recent advances in algorithmic and computing technology make it possible to re visit these problems with the hope of solving practically relevant problems in reasonable amounts of computational time. Initial attempts at solving nonlinear programs concentrated on the de velopment of local optimization methods guaranteeing globality under the assumption of convexity. On the other hand, the integer programming liter ature has concentrated on the development of methods that ensure global optima. The aim of this book is to marry the advancements in solving nonlinear and integer programming models and to develop new results in the more general framework of mixed-integer nonlinear programs (MINLPs) with the goal of devising practically efficient global optimization algorithms for MINLPs.

Book Decomposition Techniques in Mathematical Programming

Download or read book Decomposition Techniques in Mathematical Programming written by Antonio J. Conejo and published by Springer Science & Business Media. This book was released on 2006-04-28 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering,OperationsResearch,andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously available.

Book Chemical Production Scheduling

Download or read book Chemical Production Scheduling written by Christos T. Maravelias and published by Cambridge University Press. This book was released on 2021-05-06 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand common scheduling as well as other advanced operational problems with this valuable reference from a recognized leader in the field. Beginning with basic principles and an overview of linear and mixed-integer programming, this unified treatment introduces the fundamental ideas underpinning most modeling approaches, and will allow you to easily develop your own models. With more than 150 figures, the basic concepts and ideas behind the development of different approaches are clearly illustrated. Addresses a wide range of problems arising in diverse industrial sectors, from oil and gas to fine chemicals, and from commodity chemicals to food manufacturing. A perfect resource for engineering and computer science students, researchers working in the area, and industrial practitioners.

Book 50 Years of Integer Programming 1958 2008

Download or read book 50 Years of Integer Programming 1958 2008 written by Michael Jünger and published by Springer Science & Business Media. This book was released on 2009-11-06 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1958, Ralph E. Gomory transformed the field of integer programming when he published a paper that described a cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In 2008, to commemorate the anniversary of this seminal paper, a special workshop celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. It contains reprints of key historical articles and written versions of survey lectures on six of the hottest topics in the field by distinguished members of the integer programming community. Useful for anyone in mathematics, computer science and operations research, this book exposes mathematical optimization, specifically integer programming and combinatorial optimization, to a broad audience.

Book Optimization of Complex Systems  Theory  Models  Algorithms and Applications

Download or read book Optimization of Complex Systems Theory Models Algorithms and Applications written by Hoai An Le Thi and published by Springer. This book was released on 2019-06-15 with total page 1164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.

Book Large Scale Optimization with Applications

Download or read book Large Scale Optimization with Applications written by Lorenz T. Biegler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.

Book Handbook of Combinatorial Optimization

Download or read book Handbook of Combinatorial Optimization written by Ding-Zhu Du and published by Springer Science & Business Media. This book was released on 2006-08-18 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a supplementary volume to the major three-volume Handbook of Combinatorial Optimization set. It can also be regarded as a stand-alone volume presenting chapters dealing with various aspects of the subject in a self-contained way.

Book Applied Integer Programming

Download or read book Applied Integer Programming written by Der-San Chen and published by John Wiley & Sons. This book was released on 2010-01-12 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.

Book Nonlinear and Mixed Integer Optimization

Download or read book Nonlinear and Mixed Integer Optimization written by Christodoulos A. Floudas and published by Oxford University Press. This book was released on 1995-10-05 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the fundamentals of nonlinear and mixed-integer optimisation, and their applications in the important area of process synthesis in chemical engineering. Topics that are unique include the theory and methods for mixed-integer nonlinear optimisation, introduction to modelling issues in process synthesis, and optimisation-based approaches in the synthesis of heat recovery systems, distillation-based systems, and reactor-based systems.

Book Encyclopedia of Optimization

Download or read book Encyclopedia of Optimization written by Christodoulos A. Floudas and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 4646 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".

Book Integer Programming

    Book Details:
  • Author : Laurence A. Wolsey
  • Publisher : John Wiley & Sons
  • Release : 2020-10-20
  • ISBN : 1119606535
  • Pages : 336 pages

Download or read book Integer Programming written by Laurence A. Wolsey and published by John Wiley & Sons. This book was released on 2020-10-20 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A PRACTICAL GUIDE TO OPTIMIZATION PROBLEMS WITH DISCRETE OR INTEGER VARIABLES, REVISED AND UPDATED The revised second edition of Integer Programming explains in clear and simple terms how to construct custom-made algorithms or use existing commercial software to obtain optimal or near-optimal solutions for a variety of real-world problems. The second edition also includes information on the remarkable progress in the development of mixed integer programming solvers in the 22 years since the first edition of the book appeared. The updated text includes information on the most recent developments in the field such as the much improved preprocessing/presolving and the many new ideas for primal heuristics included in the solvers. The result has been a speed-up of several orders of magnitude. The other major change reflected in the text is the widespread use of decomposition algorithms, in particular column generation (branch-(cut)-and-price) and Benders’ decomposition. The revised second edition: Contains new developments on column generation Offers a new chapter on Benders’ algorithm Includes expanded information on preprocessing, heuristics, and branch-and-cut Presents several basic and extended formulations, for example for fixed cost network flows Also touches on and briefly introduces topics such as non-bipartite matching, the complexity of extended formulations or a good linear program for the implementation of lift-and-project Written for students of integer/mathematical programming in operations research, mathematics, engineering, or computer science, Integer Programming offers an updated edition of the basic text that reflects the most recent developments in the field.

Book Integer Programming

Download or read book Integer Programming written by Michele Conforti and published by Springer. This book was released on 2014-11-15 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.

Book A Reformulation Linearization Technique for Solving Discrete and Continuous Nonconvex Problems

Download or read book A Reformulation Linearization Technique for Solving Discrete and Continuous Nonconvex Problems written by Hanif D. Sherali and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the theory and applications of the Reformulation- Linearization/Convexification Technique (RL T) for solving nonconvex optimization problems. A unified treatment of discrete and continuous nonconvex programming problems is presented using this approach. In essence, the bridge between these two types of nonconvexities is made via a polynomial representation of discrete constraints. For example, the binariness on a 0-1 variable x . can be equivalently J expressed as the polynomial constraint x . (1-x . ) = 0. The motivation for this book is J J the role of tight linear/convex programming representations or relaxations in solving such discrete and continuous nonconvex programming problems. The principal thrust is to commence with a model that affords a useful representation and structure, and then to further strengthen this representation through automatic reformulation and constraint generation techniques. As mentioned above, the focal point of this book is the development and application of RL T for use as an automatic reformulation procedure, and also, to generate strong valid inequalities. The RLT operates in two phases. In the Reformulation Phase, certain types of additional implied polynomial constraints, that include the aforementioned constraints in the case of binary variables, are appended to the problem. The resulting problem is subsequently linearized, except that certain convex constraints are sometimes retained in XV particular special cases, in the Linearization/Convexijication Phase. This is done via the definition of suitable new variables to replace each distinct variable-product term. The higher dimensional representation yields a linear (or convex) programming relaxation.

Book Decision Diagrams for Optimization

Download or read book Decision Diagrams for Optimization written by David Bergman and published by Springer. This book was released on 2016-11-01 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a novel approach to discrete optimization, providing both theoretical insights and algorithmic developments that lead to improvements over state-of-the-art technology. The authors present chapters on the use of decision diagrams for combinatorial optimization and constraint programming, with attention to general-purpose solution methods as well as problem-specific techniques. The book will be useful for researchers and practitioners in discrete optimization and constraint programming. "Decision Diagrams for Optimization is one of the most exciting developments emerging from constraint programming in recent years. This book is a compelling summary of existing results in this space and a must-read for optimizers around the world." [Pascal Van Hentenryck]