Download or read book Many body Theory of Atomic Structure and Photoionization written by Tu-nan Chang and published by World Scientific. This book was released on 1993 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed discussions on many of the recent advances in the many-body theory of atomic structure are presented by the leading experts around the world on their respective specialized approaches. Emphasis is given to the photoionization dominated by the resonance structures, which reveals the effect of the multi-electron interaction in atomic transitions involving highly correlated atomic systems. Recent experimental developments, stimulated by the more advanced applications of intense lasers and short wavelength synchrotron radiation, are also reviewed. This book brings together a comprehensive theoretical and experimental survey of the current understanding of the basic physical processes involved in atomic processes.
Download or read book Atomic Many Body Theory written by I. Lindgren and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has developed through a series of lectures on atomic theory given these last eight years at Chalmers University of Technology and several oth er research centers. These courses were intended to make the basic elements of atomic theory available to experimentalists working with the hyperfine structure and the optical properties of atoms and to provide some insight into recent developments in the theory. The original intention of this book has gradually extended to include a wide range of topics. We have tried to provide a complete description of atomic theory, bridging the gap between introductory books on quantum mechanics - such as the book by Merzbacher, for instance - and present day research in the field. Our presentation is limited to static atomic prop erties, such as the effective electron-electron interaction, but the formalism can be extended without major difficulties to include dynamic properties, such as transition probabilities and dynamic polarizabilities.
Download or read book Relativistic Many Body Theory written by Ingvar Lindgren and published by Springer. This book was released on 2016-04-28 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This revised second edition of the author’s classic text offers readers a comprehensively updated review of relativistic atomic many-body theory, covering the many developments in the field since the publication of the original title. In particular, a new final section extends the scope to cover the evaluation of QED effects for dynamical processes. The treatment of the book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insufficient to explain the accurate experimental data recently obtained, particularly for highly charged ions. The main text is divided into three parts. In Part I, the standard time-independent and time-dependent perturbation procedures are reviewed. This includes a new section at the end of chapter 2 concerning the so-called ”Fock-space procedure” or ”Coulomb-only procedure” for relativistic-QED calculations . This is a procedure on an intermediate level, frequently used in recent time by chemists on molecular systems, where a full QED treatment is out of question. Part II describes three methods for QED calculations, a) the standard S-matrix formulation, b) the Two-times Green’s-function method, developed by the St Petersburg Atomic Theory group, and c) the Covariant-evolution operator (CEO) method, recently developed by the Gothenburg Atomic Theory group. In Part III, the CEO method is combined with electron correlation to arbitrary order to a unified MBPT-QED procedure. The new Part IV includes two new chapters dealing with dynamical properties and how QED effects can be evaluated for such processes. This part is much needed as there has been an increasing interest in the study of QED effects for such processes. All methods treated in the book are illustrated with numerical examples, making it a text suitable for advanced students new to the field and a useful reference for established researchers.
Download or read book Atomic Structure Theory written by Walter R. Johnson and published by Springer Science & Business Media. This book was released on 2007-03-08 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a hands-on experience with atomic structure calculations. Material covered includes angular momentum methods, the central field Schrödinger and Dirac equations, Hartree-Fock and Dirac-Hartree-Fock equations, multiplet structure, hyperfine structure, the isotope shift, dipole and multipole transitions, basic many-body perturbation theory, configuration interaction, and correlation corrections to matrix elements. The book also contains numerical methods for solving the Schrödinger and Dirac eigenvalue problems and the (Dirac)-Hartree-Fock equations.
Download or read book The Effects of Relativity in Atoms Molecules and the Solid State written by Stephen Wilson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen a growing interest in the effects of relativity in atoms, molecules and solids. On the one hand, this can be seen as result of the growing awareness of the importance of relativity in describing the properties of heavy atoms and systems containing them. This has been fueled by the inadequacy of physical models which either neglect relativity or which treat it as a small perturbation. On the other hand, it is dependent upon the technological developments which have resulted in computers powerful enough to make calculations on heavy atoms and on systems containing heavy atoms meaningful. Vector processing and, more recently, parallel processing techniques are playing an increasingly vital role in rendering the algorithms which arise in relativistic studies tractable. This has been exemplified in atomic structure theory, where the dominant role of the central nuclear charge simplifies the problem enough to permit some prediction to be made with high precision, especially for the highly ionized atoms of importance in plasma physics and in laser confinement studies. Today's sophisticated physical models of the atom derived from quantum electrodynamics would be intractable without recourse to modern computational machinery. Relativistic atomic structure calculations have a history dating from the early attempts of Swirles in the mid 1930's but continue to provide one of the primary test beds of modern theoretical physics.
Download or read book Many Body Methods in Quantum Chemistry written by Uzi Kaldor and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume contains the text of the invited lectures presented at the Symposium on Many Body Methods in Quantum Chemistry, held on the campus of Tel Aviv University in August 1988. The Symposium was a satellite meeting of the Sixth International Congress on Quantum Chemistry held in Jerusalem. The development and application of many-body methods in Quantum chemistry have been on the rise for a number of years. This is therefore a good time for an interim report on the state of the field. It is hoped that such a report is hereby provided, though it may not be complete. The Symposium was held under the auspices of Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry. Other sponsors were the Israeli Academy of Sciences and Humanities, and the Israeli Ministry of Science and Development. Many thanks go to all of them. Finally, I would like to thank all the speakers and participants for making the meeting the enjoyable and (I hope) profitable experience it was. Tel Aviv, Israel Uzi Kaldor TESTS AND APPLICATIONS OF COMPLETE MODEL SPACE QUASIDEGENERATE MANY-BODY PERTURBATION THEORY FOR MOLECULES Karl F. Freed The James Franck Institute and Department of Chemistry The University of Chicago, Chicago, DUnois 60637 U.S.A.
Download or read book Springer Handbook of Atomic Molecular and Optical Physics written by Gordon W. F. Drake and published by Springer Nature. This book was released on 2023-02-09 with total page 1436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprises a comprehensive reference source that unifies the entire fields of atomic molecular and optical (AMO) physics, assembling the principal ideas, techniques and results of the field. 92 chapters written by about 120 authors present the principal ideas, techniques and results of the field, together with a guide to the primary research literature (carefully edited to ensure a uniform coverage and style, with extensive cross-references). Along with a summary of key ideas, techniques, and results, many chapters offer diagrams of apparatus, graphs, and tables of data. From atomic spectroscopy to applications in comets, one finds contributions from over 100 authors, all leaders in their respective disciplines. Substantially updated and expanded since the original 1996 edition, it now contains several entirely new chapters covering current areas of great research interest that barely existed in 1996, such as Bose-Einstein condensation, quantum information, and cosmological variations of the fundamental constants. A fully-searchable CD- ROM version of the contents accompanies the handbook.
Download or read book Methods in Computational Chemistry written by Stephen Wilson and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: When, forty years ago, as a student of Charles Coulson in Oxford I began work in theoretical chemistry, I was provided with a Brunsviga calculator-a small mechanical device with a handle for propulsion, metal levers for setting the numbers, and a bell that rang to indicate overflow. What has since come to be known as computational chemistry was just beginning. There followed a long period in which the fundamental theory of the "golden age" (1925-1935) was extended and refined and in which the dreams of the early practitioners were gradually turned into hard arithmetic reality. As a still-computing survivor from the early postwar days now enjoying the benefits of unbelievably improved hardware, I am glad to contribute a foreword to this series and to have the opportunity of providing a little historical perspective. After the Brunsviga came the electromechanical machines of the late 1940s and early 1950s, and a great reduction in the burden of calculating molecular wavefunctions. We were now happy. At least for systems con taining a few electrons it was possible to make fully ab initio calculations, even though semiempirical models remained indispensable for most molecules of everyday interest. The 1950 papers of Hall and of Roothaan represented an important milestone along the road to larger-scale non empirical calculations, extending the prewar work of Hartree and Fock from many-electron atoms to many-electron molecules-and thus into "real chemistry.
Download or read book Computational Chemistry Reviews Of Current Trends Vol 1 written by Nicholas Bodor and published by World Scientific. This book was released on 1996-02-16 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of recent progress in computational techniques as well as examples of the application of existing computational methods in different areas of chemistry, physics, and biochemistry. Introductory chapters cover a broad range of fundamental topics, including: state-of-the-art basis set expansion methods for computing atomic and molecular electronic structures based on the use of relativistic quantum mechanics; the most recent developments in Hartree-Fock methods, particularly in techniques suited for very large systems; the current analysis of the solute-solvent free energy of interaction and the physical bases used to evaluate the electrostatic, cavitation, and dispersion terms; an introduction to the additive fuzzy electron density fragmentation scheme within various ab initio Hartree-Fock quantum-chemical computational schemes, which has provided the means for generating representative molecular fragment densities characteristic to their local environment within a molecule. This book also features a review of recent ab initio calculations on the structure and interactions of DNA bases, a chapter on computational approaches to the design of safer drugs and their molecular properties, and a systematic conceptual study on a route which allows one to stuff fullerenes.
Download or read book The Chemistry of Superheavy Elements written by Matthias Schädel and published by Springer Science & Business Media. This book was released on 2013-11-30 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of "The Chemistry of the Superheavy Elements" provides a complete coverage of the chemistry of a series of elements beginning with atomic number 104 – the transactinides or superheavy elements – including their nuclear properties and production in nuclear reactions at heavy-ion accelerators. The contributors to this work include many renowned scientists who, during the last decades, have made vast contributions towards understanding the physics and chemistry of these elusive elements, both experimentally and theoretically. The main emphasis here is on demonstrating the fascinating studies involved in probing the architecture of the Periodic Table at its uppermost end, where relativistic effects drastically influence chemical properties. All known chemical properties of these elements are described together with the experimental techniques applied to study these short-lived man-made elements one atom-at-a-time. The status of theoretical chemistry and of empirical models is presented as well as aspects of nuclear physics. In addition, one chapter outlines the meanderings in this field from a historical perspective and the search for superheavy elements in Nature.
Download or read book Energy Research Abstracts written by and published by . This book was released on 1987 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Relativistic Theory of Atoms and Molecules III written by Pekka Pyykkö and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relativistic effects are of major importance for understanding the properties of heavier atoms and molecules. Volumes I-III of Relativistic Theory of Atoms and Molecules constitute the only available bibliography on related calculations. In Volume III, 3792 new references covering 1993-1999 are added to the database. The material is characterized by an analysis of the respective papers. The volume gives the user a comprehensive bibliography on relativistic atomic and molecular calculations, including studies on the Dirac equation and related solid-state work.
Download or read book Advances in Atomic Molecular and Optical Physics written by and published by Academic Press. This book was released on 2011-08-09 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 55 of the Advances in Atomic, Molecular, and Optical Physics Series contains seven contributions, covering a diversity of subject areas in atomic, molecular and optical physics. In their contribution, Stowe, Thorpe, Pe'er, Ye, Stalnaker, Gerginov, and Diddams explore recent developments in direct frequency comb spectroscopy. Precise phase coherence among successive ultrashort pulses of a frequency comb allows one to probe fast dynamics in the time domain and high-resolution structural information in the frequency domain for both atoms and molecules. The authors provide a detailed review of some of the current applications that exploit the unique features of frequency comb spectroscopy and discuss its future directions. Yurvsky, Olshanii and Weiss review theory and experiment of elongated atom traps that confine ultracold gases in a quasi-one-dimensional regime. Under certain conditions, these quasi-one-dimensional gases are well-described by integrable one-dimensional many-body models with exact quantum solutions. Thermodynamic and correlation properties of one such model that has been experimentally realized are reviewed. DePaola, Morgenstein and Andersen discuss magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS), exploring collisions between a projectile and target resulting in charged target fragments. MOTRIMS combines the technology of laser cooling and trapping of target atoms with the momentum analysis of the charged fragments that recoil from the target. The authors review the different MOTRIMS experimental approaches and the spectroscopic and collisional investigations performed so far. Safronova and Johnson give an overview of atomic many-body perturbation theory and discuss why extensions of the theory are needed. They present "all-order results based on a linearized version of coupled cluster expansions and apply the theory to calculations of energies, transition matrix elements and hyperfine constants. Another contribution on atomic theory, authored by Fischer, explores the advantages of expanding the atomic radial wave functions in a B-spline basis. The differential equations are replaced by non-linear systems of equations and the problems of orthogonality requirements can be dealt with using projection operators. Electron-ion collisional processes are analyzed by Mueller, including descriptions of the experimental techniques needed to obtain cross section data and typical values for these cross sections. The present status of the field is discussed in relation to the detailed cross sections and rate coefficients that are needed for understanding laboratory or astrophysical plasmas. Finally, Duan and Monroe review ways to achieve scalable and robust quantum communication, state engineering, and quantum computation. Using radiation and atoms, ions, or atomic ensembles, they show that they can construct scalable quantum networks that are inherently insensitive to noise. Progress in experimental realization of their proposals is outlined. - International experts - Comprehensive articles - New developments
Download or read book Supercomputational Science written by R.G. Evans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: In contemporary research, the supercomputer now ranks, along with radio telescopes, particle accelerators and the other apparatus of "big science", as an expensive resource, which is nevertheless essential for state of the art research. Supercomputers are usually provided as shar.ed central facilities. However, unlike, telescopes and accelerators, they are find a wide range of applications which extends across a broad spectrum of research activity. The difference in performance between a "good" and a "bad" computer program on a traditional serial computer may be a factor of two or three, but on a contemporary supercomputer it can easily be a factor of one hundred or even more! Furthermore, this factor is likely to increase with future generations of machines. In keeping with the large capital and recurrent costs of these machines, it is appropriate to devote effort to training and familiarization so that supercomputers are employed to best effect. This volume records the lectures delivered at a Summer School held at The Coseners House in Abingdon, which was an attempt to disseminate research methods in the different areas in which supercomputers are used. It is hoped that the publication of the lectures in this form will enable the experiences and achievements of supercomputer users to be shared with a larger audience. We thank all the lecturers and participants for making the Summer School an enjoyable and profitable experience. Finally, we thank the Science and Engineering Research Council and The Computer Board for supporting the Summer School.
Download or read book Classical Relativistic Many Body Dynamics written by M.A. Trump and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: in this work, we must therefore assume several abstract concepts that hardly need defending at this point in the history of mechanics. Most notably, these include the concept of the point particle and the concept of the inertial observer. The study of the relativistic particle system is undertaken here by means of a particular classical theory, which also exists on the quantum level, and which is especially suited to the many-body system in flat spacetime. In its fundamental postulates, the theory may be consid ered to be primarily the work of E.C.G. Stiickelberg in the 1940's, and of L.P. Horwitz and C. Piron in the 1970's, who may be said to have provided the generalization of Stiickelberg's theory to the many-body system. The references for these works may be found in Chapter 1. The theory itself may be legitimately called off-shell Hamiltonian dynamics, parameterized relativistic mechanics, or even classical event dynamics. The most important feature of the theory is probably the use of an invariant world time parameter, usually denoted T, which provides an evolution time for the system in such as way as to allow manifest co variance within a Hamiltonian formalism. In general, this parameter is neither a Lorentz-frame time, nor the proper time of the particles in the system.
Download or read book Essential Computational Modeling in Chemistry written by Philippe G. Ciarlet and published by Elsevier. This book was released on 2010-12-07 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essential Computational Modeling in Chemistry presents key contributions selected from the volume in the Handbook of Numerical Analysis: Computational Modeling in Chemistry Vol. 10(2005). Computational Modeling is an active field of scientific computing at the crossroads between Physics, Chemistry, Applied Mathematics and Computer Science. Sophisticated mathematical models are increasingly complex and extensive computer simulations are on the rise. Numerical Analysis and scientific software have emerged as essential steps for validating mathematical models and simulations based on these models. This guide provides a quick reference of computational methods for use in understanding chemical reactions and how to control them. By demonstrating various computational methods in research, scientists can predict such things as molecular properties. The reference offers a number of techniques and the numerical analysis needed to perform rigorously founded computations. Various viewpoints of methods and applications are available for researchers to chose and experiment with; Numerical analysis and open problems is useful for experimentation; Most commonly used models and techniques for the molecular case is quickly accessible
Download or read book Advances in Quantum Systems in Chemistry Physics and Biology written by Liliana Mammino and published by Springer Nature. This book was released on 2020-02-05 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited, multi-author book gathers selected, peer-reviewed contributions based on papers presented at the 23rd International Workshop on Quantum Systems in Chemistry, Physics, and Biology (QSCP-XXIII), held in Mopani Camp, The Kruger National Park, South Africa, in September 2018. The content is primarily intended for scholars, researchers, and graduate students working at universities and scientific institutes who are interested in the structure, properties, dynamics, and spectroscopy of atoms, molecules, biological systems, and condensed matter.