EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Relativistic Dissipative Hydrodynamic Description of the Quark Gluon Plasma

Download or read book Relativistic Dissipative Hydrodynamic Description of the Quark Gluon Plasma written by Akihiko Monnai and published by Springer Science & Business Media. This book was released on 2014-01-20 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents theoretical and numerical studies on phenomenological description of the quark–gluon plasma (QGP), a many-body system of elementary particles. The author formulates a causal theory of hydrodynamics for systems with net charges from the law of increasing entropy and a momentum expansion method. The derived equation results can be applied not only to collider physics, but also to the early universe and ultra-cold atoms. The author also develops novel off-equilibrium hydrodynamic models for the longitudinal expansion of the QGP on the basis of these equations. Numerical estimations show that convection and entropy production during the hydrodynamic evolution are key to explaining excessive charged particle production, recently observed at the Large Hadron Collider. Furthermore, the analyses at finite baryon density indicate that the energy available for QGP production is larger than the amount conventionally assumed.

Book Quark  Gluon Plasma 3

    Book Details:
  • Author : Rudolph C. Hwa
  • Publisher : World Scientific
  • Release : 2004
  • ISBN : 9812795537
  • Pages : 786 pages

Download or read book Quark Gluon Plasma 3 written by Rudolph C. Hwa and published by World Scientific. This book was released on 2004 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation. Text reviews the major topics in Quark-Gluon Plasma, including: the QCD phase diagram, the transition temperature, equation of state, heavy quark free energies, and thermal modifications of hadron properties. Includes index, references, and appendix. For researchers and practitioners.

Book Non equilibrium Hydrodynamics of the Quark Gluon Plasma  from Theory to Phenomenology

Download or read book Non equilibrium Hydrodynamics of the Quark Gluon Plasma from Theory to Phenomenology written by Dekrayat K. Almaalol and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quark-gluon plasma (QGP) is a deconfined phase of strongly interacting matter which can be described by the theory of quantum chromodynamics (QCD). The QGP filled the entire universe in the early moments after the big bang and is believed to exist in the present time in the core of massive neutron stars. Understanding the physical properties of QGP and its non-equilibrium dynamics requires solving the full non-perturbative QCD equations of motion, which is an unsolved problem at this time. Ultra-relativistic heavy ion collisions (URHICs) can be used to reproduce the extreme conditions of the early universe and create a short-lived QGP in the laboratory; in what is called the ``little'' bang. The highly momentum-anisotropic far-from-equilibrium initial state created in these experiments evolves dynamically in three main stages: pre-equilibrium ([tau] 0.5 fm/c), thermalization/hydrodynamization ([tau] 0.5-2 fm/c), and finally freeze-out/hadronization ([tau]> 10 fm/c), where 1fm/c = 3x10^(-24) s. Each of these stages span a different regime of physics, with different relevant degrees of freedom and, therefore, are described by different theoretical models, such as QCD kinetic theory, dissipative hydrodynamics, and hadronic kinetic theory. This dissertation considers the impact of all three of these stages on our understanding of the QGP generated in URHICs, with the focus on better understanding the non-equilibrium dynamics of the QGP, its path to equilibrium and the effect such non-equilibrium dynamics have on our ability to extract fundamental information about the QGP. This dissertation also provides theoretical insights into how to improve URHIC simulations by examining the impact of non-equilibrium corrections present during different stages of QGP evolution.

Book Non equilibrium Hydrodynamics of the Quark gluon Plasma

Download or read book Non equilibrium Hydrodynamics of the Quark gluon Plasma written by Nopoush Mohammad and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Relativistic heavy-ion collision experiments are currently the only controlled way to generate and study matter in the most extreme temperatures (T ~10e+12 K). At these temperatures matter undergoes a phase transition to an exotic phase of matter called the quark-gluon plasma (QGP). The QGP is an extremely hot and deconfined phase of matter where sub-nucleonic constituents (quarks and gluons) are asymptotically free. The QGP phase is important for different reasons. First of all, our universe existed in this phase up to approximately t ~10e-5 s after the Big Bang, before it cools down sufficiently to form any kind of quark bound states. In this regard, studying the QGP provides us with useful information about the dynamics and evolution of the early universe. Secondly, high-energy collisions serve as a microscope with a resolution on the order of 10e-15 m (several orders of magnitude more powerful than the best ever developed electron microscopes). With this fantastic probe, penetrating into the detailed structure of nucleons, and the discovery of new particles and fundamental phases are made possible. The dynamics of the QGP is based on quantum chromodynamics (which governs the interactions of quarks and gluons) and the associated force is "strong force". The strong collective behaviors observed experimentally inspired people to use dissipative fluid dynamics to model the dynamics of the medium. The QGP produced in heavy-ion collisions, experiences strong longitudinal expansion at early times which leads to a large momentum-space anisotropy in the local rest frame distribution function. The rapid longitudinal expansion casts doubt on the application of standard viscous hydrodynamics (vHydro) models, which lead to unphysical predictions such as negative pressure, negative one-particle distribution function, and so on. Anisotropic hydrodynamics (aHydro) takes into account the strong momentum-space anisotropy in the leading order distribution function in a consistent and systematic way. My dissertation is about the formulation and application of anisotropic hydrodynamics as a successful non-equilibrium hydrodynamics model for studying the QGP. For this purpose, I introduce the basic conformal anisotropic hydrodynamics formalism and then explain the ways we included realistic features (bulk degree of freedom, quasiparticle implementation of realistic equation of state, more realistic collisional kernel), to make it a suitable hydrodynamics model for studying the QGP generated in heavy-ion collisions. For verification of our model we have compared the evolution of model parameters predicted by aHydro and vHydro, with exact analytical solution of the Boltzmann equation. For this purpose, we have studied the evolution of the system under conformal Gubser flow using the aHydro model. By transforming to de Sitter spacetime (a non-trivial curved coordinate system) we simplified the dynamics to 0+1d spacetime. Comparisons with exact solutions show that aHydro better reproduces the exact solutions than the best available vHydro models. However, the system is not conformal and the aHydro needed to be improved to include a realistic prescription for the equation of state which takes care of non-ideal effect in the dynamics. In the framework of finite temperature eld theory the equation of state is provided by numerical calculation of QCD partition function using lattice QCD (LQCD), whereas, devising an equation of state for aHydro model is challenging because therein we deal with anisotropic pressures. In the next step of my research, we have designed a novel method for implementing the realistic equation of state (provided by lattice QCD) in the aHydro formalism. This model, called the quasiparticle aHydro model, integrates the non-conformal effects in the aHydro model. The non-conformal effects are due to strong interactions of plasma constituents which leads to temperature-dependence of the particles' effective mass in the system. Based on the quasiparticle picture, we have developed the quasiparticle aHydro (aHydroQP) model which has all necessary components for studying the phenomenology of the QGP created in heavy-ion collisions. We have then compared the phenomenological predictions of the aHydroQP model with experimental observations. Comparisons illustrate a high level of consistency between our model and the experimental data. The last two chapters are about two applications of the aHydro model to field-theoretical measurables in the QGP. In these chapters, we have calculated the quark self-energy in an anisotropic QGP. The quark self-energy is important because it encodes the way quarks gain interactional mass while in the hot QGP. I also have presented the calculation of gluon self-energy in hard loop approximation in an anisotropic QGP.The gluon self-energy is important since it is related to heavy-quark potential and heavy quarkonium suppression. Heavy quarkonia bound states, besides theoretical importance, serve as a thermometer for the QGP.

Book The XVIII International Conference on Strangeness in Quark Matter  SQM 2019

Download or read book The XVIII International Conference on Strangeness in Quark Matter SQM 2019 written by Domenico Elia and published by Springer Nature. This book was released on 2020-10-03 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on new experimental and theoretical advances concerning the role of strange and heavy-flavour quarks in high-energy heavy-ion collisions and in astrophysical phenomena. The topics covered include • Strangeness and heavy-quark production in nuclear collisions and hadronic interactions, • Hadron resonances in the strongly-coupled partonic and hadronic medium, • Bulk matter phenomena associated with strange and heavy quarks, • QCD phase structure, • Collectivity in small systems, • Strangeness in astrophysics,• Open questions and new developments.

Book Describing the Dynamics of the Quark gluon Plasma Using Relativistic Viscous Hydrodynamics

Download or read book Describing the Dynamics of the Quark gluon Plasma Using Relativistic Viscous Hydrodynamics written by Mohammad N. Yaseen and published by . This book was released on 2016 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: When heavy nuclei collide at ultra-relativistic energies, their nuclear matter will melt producing what is known as the Quark-Gluon Plasma (QGP); a new state of matter that has been produced at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) and Super Proton Synchrotron (LHC) in European Organization for Nuclear Research (CERN). Scientists now think that this matter filled the entire universe during the first micro second after the Big Bang. According to the experimental data, this matter acts like a nearly perfect liquid. This study requires a quantitatively precise theoretical framework to describe the dynamical evolution of the fireball produced by the collision. The equations that control the fireball expansion cannot be solved analytically. As a result, scientists must solve these equations numerically. The main goal of this thesis is to find precise numerical solutions for these equations. This is complicated by the fact that when using fluctuating initial conditions, discontinuities may be present which cause problems for standard centered differences schemes. To fix this problem, we will use the following two numerical methods: LAX and weighted LAX.

Book Hydrodynamic Description of the Baryon charged Quark gluon Plasma

Download or read book Hydrodynamic Description of the Baryon charged Quark gluon Plasma written by Lipei Du and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the primary goals of nuclear physics is studying the phase diagram of Quantum Chromodynamics, where a hypothetical critical point serves as a landmark. A systematic model-data comparison of heavy-ion collisions at center-of-mass energies between 1 and 100 GeV per nucleon is essential for locating the critical point and the phase boundary between the deconfined quark-gluon plasma and the confined hadron resonance gas. At these energies the net baryon density of the system can be high and critical fluctuations can become essential in the presence of the critical point. Simulating their dynamical evolution thus becomes an indispensable part of theoretical modeling. In this thesis we first present the (3+1)-dimensional relativistic hydrodynamic code BEShydro, which solves the equations of motion of second-order Denicol-Niemi-Molnar-Rischke theory, including bulk and shear viscous components as well as baryon diffusion current. We then study the effects caused by the baryon diffusion on the longitudinal dynamics and on the phase diagram trajectories of fluid cells at different space-time rapidities of the system, and how they are affected by critical dynamics near the critical point. We finally explore the evolution of non-hydrodynamic slow processes describing long wavelength critical fluctuations near the critical point, by extending the conventional hydrodynamic description by coupling it to additional explicitly evolving slow modes, and their back-reaction to the bulk matter properties.

Book Introduction to Particle and Astroparticle Physics

Download or read book Introduction to Particle and Astroparticle Physics written by Alessandro De Angelis and published by Springer. This book was released on 2015-09-05 with total page 680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, written by researchers who had been professionals in accelerator physics before becoming leaders of groups in astroparticle physics, introduces both fields in a balanced and elementary way, requiring only a basic knowledge of quantum mechanics on the part of the reader. The new profile of scientists in fundamental physics ideally involves the merging of knowledge in astroparticle and particle physics, but the duration of modern experiments is such that people cannot simultaneously be practitioners in both. Introduction to Particle and Astroparticle Physics is designed to bridge the gap between the fields. It can be used as a self-training book, a consultation book, or a textbook providing a “modern” approach to particles and fundamental interactions.

Book Understanding the Origin of Matter

Download or read book Understanding the Origin of Matter written by David Blaschke and published by Springer Nature. This book was released on 2022-09-14 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at providing a solid basis for the education of the next generation of researchers in hot, dense QCD (Quantum ChromoDynamics) matter. This is a rapidly growing field at the interface of the smallest, i.e. subnuclear physics, and the largest scales, namely astrophysics and cosmology. The extensive lectures presented here are based on the material used at the training school of the European COST action THOR (Theory of hot matter in relativistic heavy-ion collisions). The book is divided in three parts covering ultrarelativistic heavy-ion collisions, several aspects related to QCD, and simulations of QCD and heavy-ion collisions. The scientific tools and methods discussed provide graduate students with the necessary skills to understand the structure of matter under extreme conditions of high densities, temperatures, and strong fields in the collapse of massive stars or a few microseconds after the big bang. In addition to the theory, the set of lectures presents hands-on material that includes an introduction to simulation programs for heavy-ion collisions, equations of state, and transport properties.

Book Phenomenology of Ultra relativistic Heavy ion Collisions

Download or read book Phenomenology of Ultra relativistic Heavy ion Collisions written by and published by World Scientific. This book was released on 2010 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the main ideas used in the physics of ultra-realistic heavy-ion collisions, this book covers topics such as hot and dense matter and the formation of the quark-gluon plasma in present and future heavy-ion experiments

Book Relativistic Fluid Dynamics in and out of Equilibrium

Download or read book Relativistic Fluid Dynamics in and out of Equilibrium written by Paul Romatschke and published by Cambridge University Press. This book was released on 2019-05-09 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a powerful new framework for out-of-equilibrium hydrodynamics, with connections to kinetic theory, AdS/CFT and applications to high-energy particle collisions.

Book Fluid Dynamics for the Anisotropically Expanding Quark gluon Plasma

Download or read book Fluid Dynamics for the Anisotropically Expanding Quark gluon Plasma written by Dennis P. Bazow and published by . This book was released on 2017 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: Local momentum anisotropies are large in the early stages of the quark-gluon plasma created in relativistic heavy-ion collisions, due to the extreme difference in the initial longitudinal and transverse expansion rates. In such situations, fluid dynamics derived from an expansion around an isotropic local equilibrium state is bound to break down. Instead, we resum the effects of the slowest nonhydrodynamic degree of freedom (associated with the deviation from momentum isotropy) and include it at leading order, defining a local anisotropic quasi-equilibrium state, thereby treating the longitudinal/transverse pressure anisotropy nonperturbatively. Perturbative transport equations are then derived to deal with the remaining residual momentum anisotropies. This procedure yields a complete transient effective theory called viscous anisotropic hydrodynamics. We then show that the anisotropic hydrodynamic approach, especially after perturbative inclusion of all residual viscous terms, dramatically outperforms viscous hydrodynamics in several simplified situations for which exact solutions exist but which share with realistic expansion scenarios the problem of large dissipative currents. Simulations of the full three-dimensional dynamics of the anisotropic quark-gluon plasma are then presented.

Book Relativistic Heavy ion Collisions

Download or read book Relativistic Heavy ion Collisions written by Rudolph C. Hwa and published by CRC Press. This book was released on 1990 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers of the June 1989 meeting in Beijing by the China Center of Advanced Science and Technology. This small book covers nucleus- nucleus collisions, states of the vacuum, and highly relativistic heavy ions in the experimental realm. Theoretical papers deal with quark-gluon plasma, and relativistic heavy ion collisions. Annotation copyrighted by Book News, Inc., Portland, OR

Book Relativistic Fluid Dynamics In and Out of Equilibrium

Download or read book Relativistic Fluid Dynamics In and Out of Equilibrium written by Paul Romatschke and published by Cambridge University Press. This book was released on 2019-05-09 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen unprecedented developments in the understanding of relativistic fluid dynamics in and out of equilibrium, with connections to astrophysics, cosmology, string theory, quantum information, nuclear physics and condensed matter physics. Romatschke and Romatschke offer a powerful new framework for fluid dynamics, exploring its connections to kinetic theory, gauge/gravity duality and thermal quantum field theory. Numerical algorithms to solve the equations of motion of relativistic dissipative fluid dynamics as well as applications to various systems are discussed. In particular, the book contains a comprehensive review of the theory background necessary to apply fluid dynamics to simulate relativistic nuclear collisions, including comparisons of fluid simulation results to experimental data for relativistic lead-lead, proton-lead and proton-proton collisions at the Large Hadron Collider (LHC). The book is an excellent resource for students and researchers working in nuclear physics, astrophysics, cosmology, quantum many-body systems and string theory.

Book The Physics of the Quark gluon Plasma

Download or read book The Physics of the Quark gluon Plasma written by Sourav Sarkar and published by . This book was released on 2010 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Xvith International Congress On Mathematical Physics  With Dvd rom

Download or read book Xvith International Congress On Mathematical Physics With Dvd rom written by Pavel Exner and published by World Scientific. This book was released on 2010-03-31 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Congress on Mathematical Physics is the flagship conference in this exciting field. Convening every three years, it gives a survey on the progress achieved in all branches of mathematical physics. It also provides a superb platform to discuss challenges and new ideas. The present volume collects material from the XVIth ICMP which was held in Prague, August 2009, and features most of the plenary lectures and invited lectures in topical sessions as well as information on other parts of the congress program.This volume provides a broad coverage of the field of mathematical physics, from dominantly mathematical subjects to particle physics, condensed matter, and application of mathematical physics methods in various areas such as astrophysics and ecology, amongst others.

Book Quark gluon Plasma  Heavy Ion Collisions And Hadrons

Download or read book Quark gluon Plasma Heavy Ion Collisions And Hadrons written by Edward V Shuryak and published by World Scientific. This book was released on 2024-02-28 with total page 633 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third book on Quark-Gluon plasma and heavy ion collisions follows the previous ones, published in 1988 and 2005, that described theoretical proposals for a large program, and then the QGP discovery at RHIC.The present one describes the rather mature field, with extensive program at RHIC and LHC colliders and corresponding theory. QGP turns out to be a strongly coupled medium made up of quarks and gluons, existing in exploding fireballs. It is the hottest form of matter created in a laboratory. Other subjects discussed in the book are QCD vacuum structure, including topological solitons and nonperturbative phenomena. It also includes some recent progress in theory of hadrons, bridging hadronic spectroscopy with partonic observables.