Download or read book Relative Equilibria of the Curved N Body Problem written by Florin Diacu and published by Springer Science & Business Media. This book was released on 2012-08-17 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The guiding light of this monograph is a question easy to understand but difficult to answer: {What is the shape of the universe? In other words, how do we measure the shortest distance between two points of the physical space? Should we follow a straight line, as on a flat table, fly along a circle, as between Paris and New York, or take some other path, and if so, what would that path look like? If you accept that the model proposed here, which assumes a gravitational law extended to a universe of constant curvature, is a good approximation of the physical reality (and I will later outline a few arguments in this direction), then we can answer the above question for distances comparable to those of our solar system. More precisely, this monograph provides a mathematical proof that, for distances of the order of 10 AU, space is Euclidean. This result is, of course, not surprising for such small cosmic scales. Physicists take the flatness of space for granted in regions of that size. But it is good to finally have a mathematical confirmation in this sense. Our main goals, however, are mathematical. We will shed some light on the dynamics of N point masses that move in spaces of non-zero constant curvature according to an attraction law that naturally extends classical Newtonian gravitation beyond the flat (Euclidean) space. This extension is given by the cotangent potential, proposed by the German mathematician Ernest Schering in 1870. He was the first to obtain this analytic expression of a law suggested decades earlier for a 2-body problem in hyperbolic space by Janos Bolyai and, independently, by Nikolai Lobachevsky. As Newton's idea of gravitation was to introduce a force inversely proportional to the area of a sphere the same radius as the Euclidean distance between the bodies, Bolyai and Lobachevsky thought of a similar definition using the hyperbolic distance in hyperbolic space. The recent generalization we gave to the cotangent potential to any number N of bodies, led to the discovery of some interesting properties. This new research reveals certain connections among at least five branches of mathematics: classical dynamics, non-Euclidean geometry, geometric topology, Lie groups, and the theory of polytopes.
Download or read book Relative Equilibria in the 3 Dimensional Curved n Body Problem written by Florin Diacu and published by American Mathematical Soc.. This book was released on 2014-03-05 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Considers the 3 -dimensional gravitational n -body problem, n32 , in spaces of constant Gaussian curvature k10 , i.e. on spheres S 3 ?1 , for ?>0 , and on hyperbolic manifolds H 3 ?1, for ?
Download or read book Periodic Solutions of the N Body Problem written by Kenneth R. Meyer and published by Springer. This book was released on 2006-11-17 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The N-body problem is the classical prototype of a Hamiltonian system with a large symmetry group and many first integrals. These lecture notes are an introduction to the theory of periodic solutions of such Hamiltonian systems. From a generic point of view the N-body problem is highly degenerate. It is invariant under the symmetry group of Euclidean motions and admits linear momentum, angular momentum and energy as integrals. Therefore, the integrals and symmetries must be confronted head on, which leads to the definition of the reduced space where all the known integrals and symmetries have been eliminated. It is on the reduced space that one can hope for a nonsingular Jacobian without imposing extra symmetries. These lecture notes are intended for graduate students and researchers in mathematics or celestial mechanics with some knowledge of the theory of ODE or dynamical system theory. The first six chapters develops the theory of Hamiltonian systems, symplectic transformations and coordinates, periodic solutions and their multipliers, symplectic scaling, the reduced space etc. The remaining six chapters contain theorems which establish the existence of periodic solutions of the N-body problem on the reduced space.
Download or read book Periodic Solutions of the N Body Problem written by Kenneth R. Meyer and published by Springer Science & Business Media. This book was released on 1999-11-17 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lecture Notes in Mathematics This series reports on new developments in mathematical research and teaching - quickly, informally and at a high level. The type of material considered for publication includes 1. Research monographs 2. Lectures on a new field or presentations of a new angle in a classical field 3. Summer schools and intensive courses on topics of current research Texts which are out of print but still in demand may also be considered. The timeliness of a manuscript is sometimes more important than its form, which might be preliminary or tentative. Details of the editorial policy can be found on the inside front-cover of a current volume. Manuscripts should be submitted in camera-ready form according to Springer-Verlag's specification: technical instructions will be sent on request. TEX macros may be found at: http://www.springer.de/math/authors/b-tex.html Select the version of TEX you use and then click on "Monographs". A subject index should be included. We recommend contacting the publisher or the series editors at an early stage of your project. Addresses are given on the inside back-cover.
Download or read book Equadiff 99 In 2 Volumes Proceedings Of The International Conference On Differential Equations written by Bernold Fiedler and published by World Scientific. This book was released on 2000-09-05 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.
Download or read book International Conference on Differential Equations Berlin Germany 1 7 August 1999 written by Bernold Fiedler and published by World Scientific. This book was released on 2000 with total page 846 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences
Download or read book Introduction to Hamiltonian Dynamical Systems and the N Body Problem written by Kenneth R. Meyer and published by Springer. This book was released on 2017-05-04 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition text provides expanded material on the restricted three body problem and celestial mechanics. With each chapter containing new content, readers are provided with new material on reduction, orbifolds, and the regularization of the Kepler problem, all of which are provided with applications. The previous editions grew out of graduate level courses in mathematics, engineering, and physics given at several different universities. The courses took students who had some background in differential equations and lead them through a systematic grounding in the theory of Hamiltonian mechanics from a dynamical systems point of view. This text provides a mathematical structure of celestial mechanics ideal for beginners, and will be useful to graduate students and researchers alike. Reviews of the second edition: "The primary subject here is the basic theory of Hamiltonian differential equations studied from the perspective of differential dynamical systems. The N-body problem is used as the primary example of a Hamiltonian system, a touchstone for the theory as the authors develop it. This book is intended to support a first course at the graduate level for mathematics and engineering students. ... It is a well-organized and accessible introduction to the subject ... . This is an attractive book ... ." (William J. Satzer, The Mathematical Association of America, March, 2009) “The second edition of this text infuses new mathematical substance and relevance into an already modern classic ... and is sure to excite future generations of readers. ... This outstanding book can be used not only as an introductory course at the graduate level in mathematics, but also as course material for engineering graduate students. ... it is an elegant and invaluable reference for mathematicians and scientists with an interest in classical and celestial mechanics, astrodynamics, physics, biology, and related fields.” (Marian Gidea, Mathematical Reviews, Issue 2010 d)
Download or read book Dynamical Systems written by Wang Sang Koon and published by Springer. This book was released on 2011-06-01 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book considers global solutions to the restricted three-body problem from a geometric point of view. The authors seek dynamical channels in the phase space which wind around the planets and moons and naturally connect them. These low energy passageways could slash the amount of fuel spacecraft need to explore and develop our solar system. In order to effectively exploit these passageways, the book addresses the global transport. It goes beyond the traditional scope of libration point mission design, developing tools for the design of trajectories which take full advantage of natural three or more body dynamics, thereby saving precious fuel and gaining flexibility in mission planning. This is the key for the development of some NASA mission trajectories, such as low energy libration point orbit missions (e.g., the sample return Genesis Discovery Mission), low energy lunar missions and low energy tours of outer planet moon systems, such as a mission to tour and explore in detail the icy moons of Jupiter. This book can serve as a valuable resource for graduate students and advanced undergraduates in applied mathematics and aerospace engineering, as well as a manual for practitioners who work on libration point and deep space missions in industry and at government laboratories. the authors include a wealth of background material, but also bring the reader up to a portion of the research frontier.
Download or read book Theory of Orbit written by Victory Szebehely and published by Elsevier. This book was released on 2012-12-02 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Orbits: The Restricted Problem of Three Bodies is a 10-chapter text that covers the significance of the restricted problem of three bodies in analytical dynamics, celestial mechanics, and space dynamics. The introductory part looks into the use of three essentially different approaches to dynamics, namely, the qualitative, the quantitative, and the formalistic. The opening chapters consider the formulation of equations of motion in inertial and in rotating coordinate systems, as well as the reductions of the problem of three bodies and the corresponding streamline analogies. These topics are followed by discussions on the regularization and writing of equations of motion in a singularity-free systems; the principal qualitative aspect of the restricted problem of the curves of zero velocity; and the motion and nonlinear stability in the neighborhood of libration points. This text further explores the principles of Hamiltonian dynamics and its application to the restricted problem in the extended phase space. A chapter treats the problem of two bodies in a rotating coordinate system and treats periodic orbits in the restricted problem. Another chapter focuses on the comparison of the lunar and interplanetary orbits in the Soviet and American literature. The concluding chapter is devoted to modifications of the restricted problem, such as the elliptic, three-dimensional, and Hill's problem. This book is an invaluable source for astronomers, engineers, and mathematicians.
Download or read book Recent Advances in Celestial and Space Mechanics written by Bernard Bonnard and published by Springer. This book was released on 2016-03-26 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advances in space and celestial mechanics, with a focus on the N-body problem and astrodynamics, and explores the development and application of computational techniques in both areas. It highlights the design of space transfers with various modes of propulsion, like solar sailing and low-thrust transfers between libration point orbits, as well as a broad range of targets and applications, like rendezvous with near Earth objects. Additionally, it includes contributions on the non-integrability properties of the collinear three- and four-body problem, and on general conditions for the existence of stable, minimum energy configurations in the full N-body problem. A valuable resource for physicists and mathematicians with research interests in celestial mechanics, astrodynamics and optimal control as applied to space transfers, as well as for professionals and companies in the industry.
Download or read book Introduction to Hamiltonian Dynamical Systems and the N Body Problem written by Kenneth Meyer and published by Springer Science & Business Media. This book was released on 2008-12-05 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arising from a graduate course taught to math and engineering students, this text provides a systematic grounding in the theory of Hamiltonian systems, as well as introducing the theory of integrals and reduction. A number of other topics are covered too.
Download or read book Hamiltonian Dynamical Systems written by H.S. Dumas and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins nearly two centuries ago, Hamiltonian dynamics has grown to embrace the physics of nearly all systems that evolve without dissipation, as well as a number of branches of mathematics, some of which were literally created along the way. This volume contains the proceedings of the International Conference on Hamiltonian Dynamical Systems; its contents reflect the wide scope and increasing influence of Hamiltonian methods, with contributions from a whole spectrum of researchers in mathematics and physics from more than half a dozen countries, as well as several researchers in the history of science. With the inclusion of several historical articles, this volume is not only a slice of state-of-the-art methodology in Hamiltonian dynamics, but also a slice of the bigger picture in which that methodology is imbedded.
Download or read book Using Algebraic Geometry written by David A. Cox and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.
Download or read book Mathematics Frontiers and Perspectives written by Vladimir Igorevich Arnolʹd and published by American Mathematical Soc.. This book was released on 2000 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: A celebration of the state of mathematics at the end of the millennium. Produced under the auspices of the International Mathematical Union (IMU), the book was born as part of the activities of World Mathematical Year 2000. It consists of 28 articles written by influential mathematicians.
- Author : J Delgado
- Publisher : World Scientific
- Release : 2000-10-09
- ISBN : 9814492116
- Pages : 373 pages
Hamiltonian Systems And Celestial Mechanics Hamsys 98 Proceedings Of The Iii International Symposium
Download or read book Hamiltonian Systems And Celestial Mechanics Hamsys 98 Proceedings Of The Iii International Symposium written by J Delgado and published by World Scientific. This book was released on 2000-10-09 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an outgrowth of the Third International Symposium on Hamiltonian Systems and Celestial Mechanics. The main topics are Arnold diffusion, central configurations, singularities in few-body problems, billiards, area-preserving maps, and geometrical mechanics. All papers in the volume went through the refereeing process typical of a mathematical research journal.
Download or read book New Methods of Celestial Mechanics written by Henri Poincaré and published by . This book was released on 1967 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hamiltonian Systems and Celestial Mechanics written by and published by World Scientific. This book was released on 2000 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an outgrowth of the Third International Symposium on Hamiltonian Systems and Celestial Mechanics. The main topics are Arnold diffusion, central configurations, singularities in few-body problems, billiards, area-preserving maps, and geometrical mechanics. All papers in the volume went through the refereeing process typical of a mathematical research journal.