Download or read book Regularity of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regularity of Minimal Surfaces begins with a survey of minimal surfaces with free boundaries. Following this, the basic results concerning the boundary behaviour of minimal surfaces and H-surfaces with fixed or free boundaries are studied. In particular, the asymptotic expansions at interior and boundary branch points are derived, leading to general Gauss-Bonnet formulas. Furthermore, gradient estimates and asymptotic expansions for minimal surfaces with only piecewise smooth boundaries are obtained. One of the main features of free boundary value problems for minimal surfaces is that, for principal reasons, it is impossible to derive a priori estimates. Therefore regularity proofs for non-minimizers have to be based on indirect reasoning using monotonicity formulas. This is followed by a long chapter discussing geometric properties of minimal and H-surfaces such as enclosure theorems and isoperimetric inequalities, leading to the discussion of obstacle problems and of Plateau ́s problem for H-surfaces in a Riemannian manifold. A natural generalization of the isoperimetric problem is the so-called thread problem, dealing with minimal surfaces whose boundary consists of a fixed arc of given length. Existence and regularity of solutions are discussed. The final chapter on branch points presents a new approach to the theorem that area minimizing solutions of Plateau ́s problem have no interior branch points.
Download or read book A Course in Minimal Surfaces written by Tobias H. Colding and published by American Mathematical Soc.. This book was released on 2011 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science."--Publisher's description.
Download or read book Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal Surfaces is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a nonconstant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Björling ́s initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau ́s problem and of some of its modifications. One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche ́s uniqueness theorem and Tomi ́s finiteness result. In addition, a theory of unstable solutions of Plateau ́s problems is developed which is based on Courant ́s mountain pass lemma. Furthermore, Dirichlet ́s problem for nonparametric H-surfaces is solved, using the solution of Plateau ́s problem for H-surfaces and the pertinent estimates.
Download or read book A Theory of Branched Minimal Surfaces written by Anthony Tromba and published by Springer Science & Business Media. This book was released on 2012-01-05 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most elementary questions in mathematics is whether an area minimizing surface spanning a contour in three space is immersed or not; i.e. does its derivative have maximal rank everywhere. The purpose of this monograph is to present an elementary proof of this very fundamental and beautiful mathematical result. The exposition follows the original line of attack initiated by Jesse Douglas in his Fields medal work in 1931, namely use Dirichlet's energy as opposed to area. Remarkably, the author shows how to calculate arbitrarily high orders of derivatives of Dirichlet's energy defined on the infinite dimensional manifold of all surfaces spanning a contour, breaking new ground in the Calculus of Variations, where normally only the second derivative or variation is calculated. The monograph begins with easy examples leading to a proof in a large number of cases that can be presented in a graduate course in either manifolds or complex analysis. Thus this monograph requires only the most basic knowledge of analysis, complex analysis and topology and can therefore be read by almost anyone with a basic graduate education.
Download or read book Minimal Surfaces I written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.
Download or read book Minimal Surfaces II written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal Surfaces I is an introduction to the field of minimal surfaces and a presentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can also be useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory for nonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.
Download or read book A Geometric Approach to Free Boundary Problems written by Luis A. Caffarelli and published by American Mathematical Soc.. This book was released on 2005 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: We hope that the tools and ideas presented here will serve as a basis for the study of more complex phenomena and problems."--Jacket.
Download or read book Global Analysis of Minimal Surfaces written by Ulrich Dierkes and published by Springer Science & Business Media. This book was released on 2010-08-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichmüller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateau ́s problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.
Download or read book Geometry V written by Robert Osserman and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Few people outside of mathematics are aware of the varieties of mathemat ical experience - the degree to which different mathematical subjects have different and distinctive flavors, often attractive to some mathematicians and repellant to others. The particular flavor of the subject of minimal surfaces seems to lie in a combination of the concreteness of the objects being studied, their origin and relation to the physical world, and the way they lie at the intersection of so many different parts of mathematics. In the past fifteen years a new component has been added: the availability of computer graphics to provide illustrations that are both mathematically instructive and esthetically pleas ing. During the course of the twentieth century, two major thrusts have played a seminal role in the evolution of minimal surface theory. The first is the work on the Plateau Problem, whose initial phase culminated in the solution for which Jesse Douglas was awarded one of the first two Fields Medals in 1936. (The other Fields Medal that year went to Lars V. Ahlfors for his contributions to complex analysis, including his important new insights in Nevanlinna Theory.) The second was the innovative approach to partial differential equations by Serge Bernstein, which led to the celebrated Bernstein's Theorem, stating that the only solution to the minimal surface equation over the whole plane is the trivial solution: a linear function.
Download or read book Nonlocal Diffusion and Applications written by Claudia Bucur and published by Springer. This book was released on 2016-04-08 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Download or read book Cambridge Tracts in Mathematics written by Jean Bertoin and published by Cambridge University Press. This book was released on 1996 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1996 book is a comprehensive account of the theory of Lévy processes; aimed at probability theorists.
Download or read book Minimal Surfaces written by Tobias H. Colding and published by Courant Institute of Mathemetical Sciences. This book was released on 1999 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Course in Minimal Surfaces written by Tobias Holck Colding and published by American Mathematical Society. This book was released on 2024-01-18 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.
Download or read book Fully Nonlinear Elliptic Equations written by Luis A. Caffarelli and published by American Mathematical Soc.. This book was released on 1995 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.
Download or read book Regularity of Free Boundaries in Obstacle Type Problems written by Arshak Petrosyan and published by American Mathematical Soc.. This book was released on 2012 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The regularity theory of free boundaries flourished during the late 1970s and early 1980s and had a major impact in several areas of mathematics, mathematical physics, and industrial mathematics, as well as in applications. Since then the theory continued to evolve. Numerous new ideas, techniques, and methods have been developed, and challenging new problems in applications have arisen. The main intention of the authors of this book is to give a coherent introduction to the study of the regularity properties of free boundaries for a particular type of problems, known as obstacle-type problems. The emphasis is on the methods developed in the past two decades. The topics include optimal regularity, nondegeneracy, rescalings and blowups, classification of global solutions, several types of monotonicity formulas, Lipschitz, $C^1$, as well as higher regularity of the free boundary, structure of the singular set, touch of the free and fixed boundaries, and more. The book is based on lecture notes for the courses and mini-courses given by the authors at various locations and should be accessible to advanced graduate students and researchers in analysis and partial differential equations.
Download or read book The obstacle problem written by Luis Angel Caffarelli and published by Edizioni della Normale. This book was released on 1999-10-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The material presented here corresponds to Fermi lectures that I was invited to deliver at the Scuola Normale di Pisa in the spring of 1998. The obstacle problem consists in studying the properties of minimizers of the Dirichlet integral in a domain D of Rn, among all those configurations u with prescribed boundary values and costrained to remain in D above a prescribed obstacle F. In the Hilbert space H1(D) of all those functions with square integrable gradient, we consider the closed convex set K of functions u with fixed boundary value and which are greater than F in D. There is a unique point in K minimizing the Dirichlet integral. That is called the solution to the obstacle problem.
Download or read book Free Boundary Problems in Continuum Mechanics written by Stanislav Nikolaevich Antont︠s︡ev and published by Springer Science & Business Media. This book was released on 1992 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some extremum and unilateral boundary value problems in viscous hydrodynamics.- On axisymmetric motion of the fluid with a free surface.- On the occurrence of singularities in axisymmetrical problems of hele-shaw type.- New asymptotic method for solving of mixed boundary value problems.- Some results on the thermistor problem.- New applications of energy methods to parabolic and elliptic free boundary problems.- A localized finite element method for nonlinear water wave problems.- Approximate method of investigation of normal oscillations of viscous incompressible liquid in container.- The classical Stefan problem as the limit case of the Stefan problem with a kinetic condition at the free boundary.- A mathematical model of oscillations energy dissipation of viscous liquid in a tank.- Existence of the classical solution of a two-phase multidimensional Stefan problem on any finite time interval.- Asymptotic theory of propagation of nonstationary surface and internal waves over uneven bottom.- Multiparametric problems of two-dimensional free boundary seepage.- Nonisothermal two-phase filtration in porous media.- Explicit solution of time-dependent free boundary problems.- Nonequilibrium phase transitions in frozen grounds.- System of variational inequalities arising in nonlinear diffusion with phase change.- Contact viscoelastoplastic problem for a beam.- Application of a finite-element method to two-dimensional contact problems.- Computations of a gas bubble motion in liquid.- Waves on the liquid-gas free surface in the presence of the acoustic field in gas.- Smooth bore in a two-layer fluid.- Numerical calculation of movable free and contact boundaries in problems of dynamic deformation of viscoelastic bodies.- On the canonical variables for two-dimensional vortex hydrodynamics of incompressible fluid.- About the method with regularization for solving the contact problem in elasticity.- Space evolution of tornado-like vortex core.- Optimal shape design for parabolic system and two-phase Stefan problem.- Incompressible fluid flows with free boundary and the methods for their research.- On the Stefan problems for the system of equations arising in the modelling of liquid-phase epitaxy processes.- Stefan problem with surface tension as a limit of the phase field model.- The modelization of transformation phase via the resolution of an inclusion problem with moving boundary.- To the problem of constructing weak solutions in dynamic elastoplasticity.- The justification of the conjugate conditions for the Euler's and Darcy's equations.- On an evolution problem of thermo-capillary convection.- Front tracking methods for one-dimensional moving boundary problems.- On Cauchy problem for long wave equations.- On fixed point (trial) methods for free boundary problems.- Nonlinear theory of dynamics of a viscous fluid with a free boundary in the process of a solid body wetting.