EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Regular Variation

    Book Details:
  • Author : N. H. Bingham
  • Publisher : Cambridge University Press
  • Release : 1989-06-15
  • ISBN : 9780521379434
  • Pages : 518 pages

Download or read book Regular Variation written by N. H. Bingham and published by Cambridge University Press. This book was released on 1989-06-15 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive account of the theory and applications of regular variation.

Book Extreme Values  Regular Variation and Point Processes

Download or read book Extreme Values Regular Variation and Point Processes written by Sidney I. Resnick and published by Springer. This book was released on 2013-12-20 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the fundamental mathematical and stochastic process techniques needed to study the behavior of extreme values of phenomena based on independent and identically distributed random variables and vectors. It emphasizes the core primacy of three topics necessary for understanding extremes: the analytical theory of regularly varying functions; the probabilistic theory of point processes and random measures; and the link to asymptotic distribution approximations provided by the theory of weak convergence of probability measures in metric spaces.

Book Regular Variation and Differential Equations

Download or read book Regular Variation and Differential Equations written by Vojislav Maric and published by . This book was released on 2014-01-15 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Regular Variation and Differential Equations

Download or read book Regular Variation and Differential Equations written by Vojislav Maric and published by Springer. This book was released on 2007-05-06 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book offering an application of regular variation to the qualitative theory of differential equations. The notion of regular variation, introduced by Karamata (1930), extended by several scientists, most significantly de Haan (1970), is a powerful tool in studying asymptotics in various branches of analysis and in probability theory. Here, some asymptotic properties (including non-oscillation) of solutions of second order linear and of some non-linear equations are proved by means of a new method that the well-developed theory of regular variation has yielded. A good graduate course both in real analysis and in differential equations suffices for understanding the book.

Book Mathematical Analysis and Its Applications

Download or read book Mathematical Analysis and Its Applications written by S. M. Mazhar and published by Elsevier. This book was released on 2014-05-17 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Analysis and its Applications covers the proceedings of the International Conference on Mathematical Analysis and its Applications. The book presents studies that discuss several mathematical analysis methods and their respective applications. The text presents 38 papers that discuss topics, such as approximation of continuous functions by ultraspherical series and classes of bi-univalent functions. The representation of multipliers of eigen and joint function expansions of nonlocal spectral problems for first- and second-order differential operators is also discussed. The book will be of great interest to researchers and professionals whose work involves the use of mathematical analysis.

Book Advances in Mathematical Analysis and its Applications

Download or read book Advances in Mathematical Analysis and its Applications written by Bipan Hazarika and published by CRC Press. This book was released on 2022-12-12 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Mathematical Analysis and its Applications is designed as a reference text and explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. It discusses theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some topics are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. Features: The book encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. It offers an understanding of research problems by presenting the necessary developments in reasonable details The book also discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems Contains applications on wavelets analysis and COVID-19 to show that mathematical analysis has interdisciplinary as well as real life applications. The book is aimed primarily at advanced undergraduates and postgraduate students studying mathematical analysis and mathematics in general. Researchers will also find this book useful.

Book A Modern Theory of Random Variation

Download or read book A Modern Theory of Random Variation written by Patrick Muldowney and published by John Wiley & Sons. This book was released on 2013-04-26 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: A ground-breaking and practical treatment of probability and stochastic processes A Modern Theory of Random Variation is a new and radical re-formulation of the mathematical underpinnings of subjects as diverse as investment, communication engineering, and quantum mechanics. Setting aside the classical theory of probability measure spaces, the book utilizes a mathematically rigorous version of the theory of random variation that bases itself exclusively on finitely additive probability distribution functions. In place of twentieth century Lebesgue integration and measure theory, the author uses the simpler concept of Riemann sums, and the non-absolute Riemann-type integration of Henstock. Readers are supplied with an accessible approach to standard elements of probability theory such as the central limmit theorem and Brownian motion as well as remarkable, new results on Feynman diagrams and stochastic integrals. Throughout the book, detailed numerical demonstrations accompany the discussions of abstract mathematical theory, from the simplest elements of the subject to the most complex. In addition, an array of numerical examples and vivid illustrations showcase how the presented methods and applications can be undertaken at various levels of complexity. A Modern Theory of Random Variation is a suitable book for courses on mathematical analysis, probability theory, and mathematical finance at the upper-undergraduate and graduate levels. The book is also an indispensible resource for researchers and practitioners who are seeking new concepts, techniques and methodologies in data analysis, numerical calculation, and financial asset valuation. Patrick Muldowney, PhD, served as lecturer at the Magee Business School of the UNiversity of Ulster for over twenty years. Dr. Muldowney has published extensively in his areas of research, including integration theory, financial mathematics, and random variation.

Book Real Analysis and Probability

Download or read book Real Analysis and Probability written by R. M. Dudley and published by Cambridge University Press. This book was released on 2002-10-14 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic text offers a clear exposition of modern probability theory.

Book High Dimensional Probability

Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.

Book Probability

    Book Details:
  • Author : Rick Durrett
  • Publisher : Cambridge University Press
  • Release : 2010-08-30
  • ISBN : 113949113X
  • Pages : pages

Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.

Book Stochastic Processes and Long Range Dependence

Download or read book Stochastic Processes and Long Range Dependence written by Gennady Samorodnitsky and published by Springer. This book was released on 2016-11-09 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been published in a single self-contained volume, and can be used for a one- or two-semester graduate topics course. It is complete with helpful exercises and an appendix which describes a number of notions and results belonging to the topics used frequently throughout the book, such as topological groups and an overview of the Karamata theorems on regularly varying functions.

Book Weak Convergence and Its Applications

Download or read book Weak Convergence and Its Applications written by Zhengyan Lin and published by World Scientific. This book was released on 2014 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Weak convergence of stochastic processes is one of most important theories in probability theory. Not only probability experts but also more and more statisticians are interested in it. In the study of statistics and econometrics, some problems cannot be solved by the classical method. In this book, we will introduce some recent development of modern weak convergence theory to overcome defects of classical theory.Contents: "The Definition and Basic Properties of Weak Convergence: "Metric SpaceThe Definition of Weak Convergence of Stochastic Processes and Portmanteau TheoremHow to Verify the Weak Convergence?Two Examples of Applications of Weak Convergence"Convergence to the Independent Increment Processes: "The Basic Conditions of Convergence to the Gaussian Independent Increment ProcessesDonsker Invariance PrincipleConvergence of Poisson Point ProcessesTwo Examples of Applications of Point Process Method"Convergence to Semimartingales: "The Conditions of Tightness for Semimartingale SequenceWeak Convergence to SemimartingaleWeak Convergence to Stochastic Integral I: The Martingale Convergence ApproachWeak Convergence to Stochastic Integral II: Kurtz and Protter's ApproachStable Central Limit Theorem for SemimartingalesAn Application to Stochastic Differential EquationsAppendix: The Predictable Characteristics of Semimartingales"Convergence of Empirical Processes: "Classical Weak Convergence of Empirical ProcessesWeak Convergence of Marked Empirical ProcessesWeak Convergence of Function Index Empirical ProcessesWeak Convergence of Empirical Processes Involving Time-Dependent dataTwo Examples of Applications in Statistics Readership: Graduate students and researchers in probability & statistics and econometrics.

Book A Modern Approach to Probability Theory

Download or read book A Modern Approach to Probability Theory written by Bert E. Fristedt and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.

Book Encyclopaedia of Mathematics

Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 595 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.

Book Variational Analysis

    Book Details:
  • Author : R. Tyrrell Rockafellar
  • Publisher : Springer Science & Business Media
  • Release : 2009-06-26
  • ISBN : 3642024319
  • Pages : 747 pages

Download or read book Variational Analysis written by R. Tyrrell Rockafellar and published by Springer Science & Business Media. This book was released on 2009-06-26 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Book Probability and Measure

    Book Details:
  • Author : Patrick Billingsley
  • Publisher : John Wiley & Sons
  • Release : 2017
  • ISBN : 9788126517718
  • Pages : 612 pages

Download or read book Probability and Measure written by Patrick Billingsley and published by John Wiley & Sons. This book was released on 2017 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes

Book NBS Special Publication

Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: