EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Regression Modeling Strategies

Download or read book Regression Modeling Strategies written by Frank E. Harrell and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".

Book Applied Regression Modeling

Download or read book Applied Regression Modeling written by Iain Pardoe and published by John Wiley & Sons. This book was released on 2013-01-07 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "The attention to detail is impressive. The book is very well written and the author is extremely careful with his descriptions . . . the examples are wonderful." —The American Statistician Fully revised to reflect the latest methodologies and emerging applications, Applied Regression Modeling, Second Edition continues to highlight the benefits of statistical methods, specifically regression analysis and modeling, for understanding, analyzing, and interpreting multivariate data in business, science, and social science applications. The author utilizes a bounty of real-life examples, case studies, illustrations, and graphics to introduce readers to the world of regression analysis using various software packages, including R, SPSS, Minitab, SAS, JMP, and S-PLUS. In a clear and careful writing style, the book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, and Bayesian modeling. In addition, the Second Edition features clarification and expansion of challenging topics, such as: Transformations, indicator variables, and interaction Testing model assumptions Nonconstant variance Autocorrelation Variable selection methods Model building and graphical interpretation Throughout the book, datasets and examples have been updated and additional problems are included at the end of each chapter, allowing readers to test their comprehension of the presented material. In addition, a related website features the book's datasets, presentation slides, detailed statistical software instructions, and learning resources including additional problems and instructional videos. With an intuitive approach that is not heavy on mathematical detail, Applied Regression Modeling, Second Edition is an excellent book for courses on statistical regression analysis at the upper-undergraduate and graduate level. The book also serves as a valuable resource for professionals and researchers who utilize statistical methods for decision-making in their everyday work.

Book Handbook of Regression Modeling in People Analytics

Download or read book Handbook of Regression Modeling in People Analytics written by Keith McNulty and published by CRC Press. This book was released on 2021-07-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the recent rapid growth in machine learning and predictive analytics, many of the statistical questions that are faced by researchers and practitioners still involve explaining why something is happening. Regression analysis is the best ‘swiss army knife’ we have for answering these kinds of questions. This book is a learning resource on inferential statistics and regression analysis. It teaches how to do a wide range of statistical analyses in both R and in Python, ranging from simple hypothesis testing to advanced multivariate modelling. Although it is primarily focused on examples related to the analysis of people and talent, the methods easily transfer to any discipline. The book hits a ‘sweet spot’ where there is just enough mathematical theory to support a strong understanding of the methods, but with a step-by-step guide and easily reproducible examples and code, so that the methods can be put into practice immediately. This makes the book accessible to a wide readership, from public and private sector analysts and practitioners to students and researchers. Key Features: 16 accompanying datasets across a wide range of contexts (e.g. academic, corporate, sports, marketing) Clear step-by-step instructions on executing the analyses Clear guidance on how to interpret results Primary instruction in R but added sections for Python coders Discussion exercises and data exercises for each of the main chapters Final chapter of practice material and datasets ideal for class homework or project work.

Book Regression Modeling with Actuarial and Financial Applications

Download or read book Regression Modeling with Actuarial and Financial Applications written by Edward W. Frees and published by Cambridge University Press. This book was released on 2010 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches multiple regression and time series and how to use these to analyze real data in risk management and finance.

Book Regression   Linear Modeling

Download or read book Regression Linear Modeling written by Jason W. Osborne and published by SAGE Publications. This book was released on 2016-03-24 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.

Book Regression Modeling

Download or read book Regression Modeling written by Michael Panik and published by CRC Press. This book was released on 2009-04-30 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression Modeling: Methods, Theory, and Computation with SAS provides an introduction to a diverse assortment of regression techniques using SAS to solve a wide variety of regression problems. The author fully documents the SAS programs and thoroughly explains the output produced by the programs.The text presents the popular ordinary least square

Book Regression Analysis and Linear Models

Download or read book Regression Analysis and Linear Models written by Richard B. Darlington and published by Guilford Publications. This book was released on 2016-08-22 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.

Book Data Analysis Using Regression and Multilevel Hierarchical Models

Download or read book Data Analysis Using Regression and Multilevel Hierarchical Models written by Andrew Gelman and published by Cambridge University Press. This book was released on 2007 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.

Book Applications of Regression Models in Epidemiology

Download or read book Applications of Regression Models in Epidemiology written by Erick Suárez and published by John Wiley & Sons. This book was released on 2017-02-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-stop guide for public health students and practitioners learning the applications of classical regression models in epidemiology This book is written for public health professionals and students interested in applying regression models in the field of epidemiology. The academic material is usually covered in public health courses including (i) Applied Regression Analysis, (ii) Advanced Epidemiology, and (iii) Statistical Computing. The book is composed of 13 chapters, including an introduction chapter that covers basic concepts of statistics and probability. Among the topics covered are linear regression model, polynomial regression model, weighted least squares, methods for selecting the best regression equation, and generalized linear models and their applications to different epidemiological study designs. An example is provided in each chapter that applies the theoretical aspects presented in that chapter. In addition, exercises are included and the final chapter is devoted to the solutions of these academic exercises with answers in all of the major statistical software packages, including STATA, SAS, SPSS, and R. It is assumed that readers of this book have a basic course in biostatistics, epidemiology, and introductory calculus. The book will be of interest to anyone looking to understand the statistical fundamentals to support quantitative research in public health. In addition, this book: • Is based on the authors’ course notes from 20 years teaching regression modeling in public health courses • Provides exercises at the end of each chapter • Contains a solutions chapter with answers in STATA, SAS, SPSS, and R • Provides real-world public health applications of the theoretical aspects contained in the chapters Applications of Regression Models in Epidemiology is a reference for graduate students in public health and public health practitioners. ERICK SUÁREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. He received a Ph.D. degree in Medical Statistics from the London School of Hygiene and Tropical Medicine. He has 29 years of experience teaching biostatistics. CYNTHIA M. PÉREZ is a Professor of the Department of Biostatistics and Epidemiology at the University of Puerto Rico School of Public Health. She received an M.S. degree in Statistics and a Ph.D. degree in Epidemiology from Purdue University. She has 22 years of experience teaching epidemiology and biostatistics. ROBERTO RIVERA is an Associate Professor at the College of Business at the University of Puerto Rico at Mayaguez. He received a Ph.D. degree in Statistics from the University of California in Santa Barbara. He has more than five years of experience teaching statistics courses at the undergraduate and graduate levels. MELISSA N. MARTÍNEZ is an Account Supervisor at Havas Media International. She holds an MPH in Biostatistics from the University of Puerto Rico and an MSBA from the National University in San Diego, California. For the past seven years, she has been performing analyses for the biomedical research and media advertising fields.

Book Introduction to Regression Modeling

Download or read book Introduction to Regression Modeling written by Bovas Abraham and published by Duxbury Press. This book was released on 2006 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking for an easy-to-understand text to guide you through the tough topic of regression modeling? INTRODUCTION TO REGRESSION MODELING (WITH CD-ROM) offers a blend of theory and regression applications and will give you the practice you need to tackle this subject through exercises, case studies. and projects that have you identify a problem of interest and collect data relevant to the problem's solution. The book goes beyond linear regression by covering nonlinear models, regression models with time series errors, and logistic and Poisson regression models.

Book Applied Survival Analysis

Download or read book Applied Survival Analysis written by David W. Hosmer, Jr. and published by John Wiley & Sons. This book was released on 2011-09-23 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.

Book Statistical Regression Modeling with R

Download or read book Statistical Regression Modeling with R written by Ding-Geng (Din) Chen and published by Springer Nature. This book was released on 2021-04-08 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise point of reference for the most commonly used regression methods. It begins with linear and nonlinear regression for normally distributed data, logistic regression for binomially distributed data, and Poisson regression and negative-binomial regression for count data. It then progresses to these regression models that work with longitudinal and multi-level data structures. The volume is designed to guide the transition from classical to more advanced regression modeling, as well as to contribute to the rapid development of statistics and data science. With data and computing programs available to facilitate readers' learning experience, Statistical Regression Modeling promotes the applications of R in linear, nonlinear, longitudinal and multi-level regression. All included datasets, as well as the associated R program in packages nlme and lme4 for multi-level regression, are detailed in Appendix A. This book will be valuable in graduate courses on applied regression, as well as for practitioners and researchers in the fields of data science, statistical analytics, public health, and related fields.

Book Regression Analysis

    Book Details:
  • Author : Rudolf J. Freund
  • Publisher : Elsevier
  • Release : 2006-05-30
  • ISBN : 0080522971
  • Pages : 482 pages

Download or read book Regression Analysis written by Rudolf J. Freund and published by Elsevier. This book was released on 2006-05-30 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression Analysis provides complete coverage of the classical methods of statistical analysis. It is designed to give students an understanding of the purpose of statistical analyses, to allow the student to determine, at least to some degree, the correct type of statistical analyses to be performed in a given situation, and have some appreciation of what constitutes good experimental design. - Examples and exercises contain real data and graphical illustration for ease of interpretation - Outputs from SAS 7, SPSS 7, Excel, and Minitab are used for illustration, but any major statisticalsoftware package will work equally well

Book Regression Models for Categorical and Limited Dependent Variables

Download or read book Regression Models for Categorical and Limited Dependent Variables written by J. Scott Long and published by SAGE. This book was released on 1997-01-09 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Evaluates the most useful models for categorical and limited dependent variables (CLDVs), emphasizing the links among models and applying common methods of derivation, interpretation, and testing. The author also explains how models relate to linear regression models whenever possible. Annotation c.

Book Regression Models for Categorical  Count  and Related Variables

Download or read book Regression Models for Categorical Count and Related Variables written by John P. Hoffmann and published by Univ of California Press. This book was released on 2016-08-16 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Social science and behavioral science students and researchers are often confronted with data that are categorical, count a phenomenon, or have been collected over time. Sociologists examining the likelihood of interracial marriage, political scientists studying voting behavior, criminologists counting the number of offenses people commit, health scientists studying the number of suicides across neighborhoods, and psychologists modeling mental health treatment success are all interested in outcomes that are not continuous. Instead, they must measure and analyze these events and phenomena in a discrete manner. This book provides an introduction and overview of several statistical models designed for these types of outcomes—all presented with the assumption that the reader has only a good working knowledge of elementary algebra and has taken introductory statistics and linear regression analysis. Numerous examples from the social sciences demonstrate the practical applications of these models. The chapters address logistic and probit models, including those designed for ordinal and nominal variables, regular and zero-inflated Poisson and negative binomial models, event history models, models for longitudinal data, multilevel models, and data reduction techniques such as principal components and factor analysis. Each chapter discusses how to utilize the models and test their assumptions with the statistical software Stata, and also includes exercise sets so readers can practice using these techniques. Appendices show how to estimate the models in SAS, SPSS, and R; provide a review of regression assumptions using simulations; and discuss missing data. A companion website includes downloadable versions of all the data sets used in the book.

Book Fixed Effects Regression Models

Download or read book Fixed Effects Regression Models written by Paul D. Allison and published by SAGE Publications. This book was released on 2009-04-22 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates how to estimate and interpret fixed-effects models in a variety of different modeling contexts: linear models, logistic models, Poisson models, Cox regression models, and structural equation models. Both advantages and disadvantages of fixed-effects models will be considered, along with detailed comparisons with random-effects models. Written at a level appropriate for anyone who has taken a year of statistics, the book is appropriate as a supplement for graduate courses in regression or linear regression as well as an aid to researchers who have repeated measures or cross-sectional data.

Book Bayesian Regression Modeling with INLA

Download or read book Bayesian Regression Modeling with INLA written by Xiaofeng Wang and published by CRC Press. This book was released on 2018-01-29 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: INLA stands for Integrated Nested Laplace Approximations, which is a new method for fitting a broad class of Bayesian regression models. No samples of the posterior marginal distributions need to be drawn using INLA, so it is a computationally convenient alternative to Markov chain Monte Carlo (MCMC), the standard tool for Bayesian inference. Bayesian Regression Modeling with INLA covers a wide range of modern regression models and focuses on the INLA technique for building Bayesian models using real-world data and assessing their validity. A key theme throughout the book is that it makes sense to demonstrate the interplay of theory and practice with reproducible studies. Complete R commands are provided for each example, and a supporting website holds all of the data described in the book. An R package including the data and additional functions in the book is available to download. The book is aimed at readers who have a basic knowledge of statistical theory and Bayesian methodology. It gets readers up to date on the latest in Bayesian inference using INLA and prepares them for sophisticated, real-world work. Xiaofeng Wang is Professor of Medicine and Biostatistics at the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University and a Full Staff in the Department of Quantitative Health Sciences at Cleveland Clinic. Yu Ryan Yue is Associate Professor of Statistics in the Paul H. Chook Department of Information Systems and Statistics at Baruch College, The City University of New York. Julian J. Faraway is Professor of Statistics in the Department of Mathematical Sciences at the University of Bath.