EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Reflection Electron Microscopy and Spectroscopy for Surface Analysis

Download or read book Reflection Electron Microscopy and Spectroscopy for Surface Analysis written by Zhong Lin Wang and published by Cambridge University Press. This book was released on 1996-05-23 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained book on electron microscopy and spectrometry techniques for surface studies.

Book Surface and Interface Characterization by Electron Optical Methods

Download or read book Surface and Interface Characterization by Electron Optical Methods written by Ugo Valdre and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of real space imaging and spatially-resolved spectroscopy in many of the most significant problems of surface and interface behaviour is almost self evident. To join the expertise of the tradi tional surface scientist with that of the electron microscopist has however been a slow and difficult process. In the past few years remarkable progress has been achieved, including the development of new techniques of scanning transmission and reflection imaging as well as low energy microscopy, all carried out in greatly improved vacuum conditions. Most astonishing of all has been the advent of the scanning tunneling electron microscope providing atomic resolution in a manner readily compatible with most surface science diagnostic procedures. The problem of beam damage, though often serious, is increasingly well understood so that we can assess the reliability and usefulness of the results which can now be obtained in catalysis studies and a wide range of surface science applications. These new developments and many others in more established surface techniques are all described in this book, based on lectures given at a NATO Advanced Study Institute held in Erice, Sicily, at Easter 1987. It is regretted that a few lectures on low energy electron diffraction and channeling effects could not be included. Fifteen lecturers from seven different Countries and 67 students from 23 Countries and a wide variety of backgrounds attended the school.

Book Reflection High Energy Electron Diffraction and Reflection Electron Imaging of Surfaces

Download or read book Reflection High Energy Electron Diffraction and Reflection Electron Imaging of Surfaces written by P.K. Larsen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the papers presented at the NATO Advanced Research Workshop in "Reflection High Energy Electron Diffraction and Reflection Electron Imaging of Surfaces" held at the Koningshof conference center, Veldhoven, the Netherlands, June 15-19, 1987. The main topics of the workshop, Reflection High Energy Electron Diffraction (RHEED) and Reflection Electron Microscopy (REM), have a common basis in the diffraction processes which high energy electrons undergo when they interact with solid surfaces at grazing angles. However, while REM is a new technique developed on the basis of recent advances in transmission electron microscopy, RHEED is an old method in surface crystallography going back to the discovery of electron diffraction in 1927 by Davisson and Germer. Until the development of ultra high vacuum techniques in the 1960's made instruments using slow electrons more accessable, RHEED was the dominating electron diffraction technique. Since then and until recently the method of Low Energy Electron Diffraction (LEED) largely surpassed RHEED in popularity in surface studies. The two methods are closely related of course, each with its own specific advantages. The grazing angle geometry of RHEED has now become a very useful feature because this makes it ideally suited for combination with the thin growth technique of Molecular Beam Epitaxy (MBE). This combination allows in-situ studies of freshly grown and even growing surfaces, opening up new areas of research of both fundamental and technological importance.

Book An Introduction to Surface Analysis by Electron Spectroscopy

Download or read book An Introduction to Surface Analysis by Electron Spectroscopy written by John F. Watts and published by Oxford University Press, USA. This book was released on 1990 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface analysis--the examination of the outer few nanometers of a material--is a routine undertaking in laboratories throughout the world, and is of great importance in such areas as corrosion, adhesion, polymer surface treatment, and microelectronics fabrication. This handbook provides an introduction to the two most popular surface analysis techniques: X-ray photoelectron spectroscopy and Auger electron spectroscopy. It explains the underlying physical principles, discusses instrumentation, and looks at the interpretation of resulting spectra. Applications of the two techniques are considered, and a critical comparison with other available methods is also included. This fully illustrated guide will be a valuable introduction for students and researchers in physics, engineering, and materials science.

Book Characterization of Solid Surfaces

Download or read book Characterization of Solid Surfaces written by Philip F. Kane and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until comparatively recently, trace analysis techniques were in general directed toward the determination of impurities in bulk materials. Methods were developed for very high relative sensitivity, and the values determined were average values. Sampling procedures were devised which eliminated the so-called sampling error. However, in the last decade or so, a number of developments have shown that, for many purposes, the distribution of defects within a material can confer important new properties on the material. Perhaps the most striking example of this is given by semiconductors; a whole new industry has emerged in barely twenty years based entirely on the controlled distribu tion of defects within what a few years before would have been regarded as a pure, homogeneous crystal. Other examples exist in biochemistry, metallurgy, polyiners and, of course, catalysis. In addition to this of the importance of distribution, there has also been a recognition growing awareness that physical defects are as important as chemical defects. (We are, of course, using the word defect to imply some dis continuity in the material, and not in any derogatory sense. ) This broadening of the field of interest led the Materials Advisory Board( I} to recommend a new definition for the discipline, "Materials Character ization," to encompass this wider concept of the determination of the structure and composition of materials. In characterizing a material, perhaps the most important special area of interest is the surface.

Book Electron Microscopy

Download or read book Electron Microscopy written by S. Amelinckx and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derived from the successful three-volume Handbook of Microscopy, this book provides a broad survey of the physical fundamentals and principles of all modern techniques of electron microscopy. This reference work on the method most often used for the characterization of surfaces offers a competent comparison of the feasibilities of the latest developments in this field of research. Topics include: * Stationary Beam Methods: Transmission Electron Microscopy/ Electron Energy Loss Spectroscopy/ Convergent Electron Beam Diffraction/ Low Energy Electron Microscopy/ Electron Holographic Methods * Scanning Beam Methods: Scanning Transmission Electron Microscopy/ Scanning Auger and XPS Microscopy/ Scanning Microanalysis/ Imaging Secondary Ion Mass Spectrometry * Magnetic Microscopy: Scanning Electron Microscopy with Polarization Analysis/ Spin Polarized Low Energy Electron Microscopy Materials scientists as well as any surface scientist will find this book an invaluable source of information for the principles of electron microscopy.

Book Electron Spectroscopy for Surface Analysis

Download or read book Electron Spectroscopy for Surface Analysis written by H. Ibach and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of surface physics and surface chemistry as a science is closely related to the technical development of a number of methods involving electrons either as an excitation source or as an emitted particle carrying characteristic information. Many of these various kinds of electron spectroscopies have become commercially available and have made their way into industrial laboratories. Others are still in an early stage, but may become of increasing importance in the future. In this book an assessment of the various merits and possible drawbacks of the most frequently used electron spectroscopies is attempted. Emphasis is put on prac tical examples and experimental design rather than on theoretical considerations. The book addresses itself to the reader who wishes to know which electron spectroscopy or which combination of different electron spectroscopies he may choose for the particular problems under investigation. After a brief introduction the practical design of electron spectrometers and their figures of merit important for the different applications are discussed in Chapter 2. Chapter 3 deals with electron excited electron spectroscopies which are used for the elemental analysis of surfaces. Structure analysis by electron diffrac tion is described in Chapter 4 with special emphasis on the use of electron diffrac tion for the investigation of surface imperfections. For the application of electron diffraction to surface crystallography in general, the reader is referred to Volume 4 of "Topics in Applied Physics".

Book Scanning Transmission Electron Microscopy

Download or read book Scanning Transmission Electron Microscopy written by Stephen J. Pennycook and published by Springer Science & Business Media. This book was released on 2011-03-24 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scanning transmission electron microscopy has become a mainstream technique for imaging and analysis at atomic resolution and sensitivity, and the authors of this book are widely credited with bringing the field to its present popularity. Scanning Transmission Electron Microscopy(STEM): Imaging and Analysis will provide a comprehensive explanation of the theory and practice of STEM from introductory to advanced levels, covering the instrument, image formation and scattering theory, and definition and measurement of resolution for both imaging and analysis. The authors will present examples of the use of combined imaging and spectroscopy for solving materials problems in a variety of fields, including condensed matter physics, materials science, catalysis, biology, and nanoscience. Therefore this will be a comprehensive reference for those working in applied fields wishing to use the technique, for graduate students learning microscopy for the first time, and for specialists in other fields of microscopy.

Book Surface Microscopy with Low Energy Electrons

Download or read book Surface Microscopy with Low Energy Electrons written by Ernst Bauer and published by Springer. This book was released on 2014-07-10 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, written by a pioneer in surface physics and thin film research and the inventor of Low Energy Electron Microscopy (LEEM), Spin-Polarized Low Energy Electron Microscopy (SPLEEM) and Spectroscopic Photo Emission and Low Energy Electron Microscopy (SPELEEM), covers these and other techniques for the imaging of surfaces with low energy (slow) electrons. These techniques also include Photoemission Electron Microscopy (PEEM), X-ray Photoemission Electron Microscopy (XPEEM), and their combination with microdiffraction and microspectroscopy, all of which use cathode lenses and slow electrons. Of particular interest are the fundamentals and applications of LEEM, PEEM, and XPEEM because of their widespread use. Numerous illustrations illuminate the fundamental aspects of the electron optics, the experimental setup, and particularly the application results with these instruments. Surface Microscopy with Low Energy Electrons will give the reader a unified picture of the imaging, diffraction, and spectroscopy methods that are possible using low energy electron microscopes.

Book Microstructural Characterization of Materials

Download or read book Microstructural Characterization of Materials written by David Brandon and published by John Wiley & Sons. This book was released on 2013-03-21 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microstructural characterization is usually achieved by allowing some form of probe to interact with a carefully prepared specimen. The most commonly used probes are visible light, X-ray radiation, a high-energy electron beam, or a sharp, flexible needle. These four types of probe form the basis for optical microscopy, X-ray diffraction, electron microscopy, and scanning probe microscopy. Microstructural Characterization of Materials, 2nd Edition is an introduction to the expertise involved in assessing the microstructure of engineering materials and to the experimental methods used for this purpose. Similar to the first edition, this 2nd edition explores the methodology of materials characterization under the three headings of crystal structure, microstructural morphology, and microanalysis. The principal methods of characterization, including diffraction analysis, optical microscopy, electron microscopy, and chemical microanalytical techniques are treated both qualitatively and quantitatively. An additional chapter has been added to the new edition to cover surface probe microscopy, and there are new sections on digital image recording and analysis, orientation imaging microscopy, focused ion-beam instruments, atom-probe microscopy, and 3-D image reconstruction. As well as being fully updated, this second edition also includes revised and expanded examples and exercises, with a solutions manual available at http://develop.wiley.co.uk/microstructural2e/ Microstructural Characterization of Materials, 2nd Edition will appeal to senior undergraduate and graduate students of material science, materials engineering, and materials chemistry, as well as to qualified engineers and more advanced researchers, who will find the book a useful and comprehensive general reference source.

Book Surface Analysis by Electron Spectroscopy

Download or read book Surface Analysis by Electron Spectroscopy written by Graham C. Smith and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is t~e fifth in aseries of scientific textbooks designed to cover advances in selected research fields from a basic and general view point. The reader is taken carefully but rapidly through the introductory material in order that t~e significance of recent developments can be understood with only limited initial knowledge. The inclusion in the Appendix of the abstracts of many of the more important papers in the field provides further assistance for the non-specialist, and acts as aspringboard to supplementary reading for those who wish to consult the original liter ature. Surface analysis has been the subject of numerous books and review articles, and the fundamental scientific principles of t~e more popular techniques are now reasonably weIl established. This book is concerned with the very powerful techniques of Auger electron and X-ray photoelectron spectroscopy (AES and XPS), with an emphasis on how they may be performed as part of a modern analytical facility. Since the development of AES and XPS in the late 1960s and early 1970s there have been great strides forward in the sensitivities and resolutions of the instrumentation. Simultaneously, these spectroscopies have undergone a veritable explosion, both in their acceptance alongside more routine ana1ytical techniques and in the range of problems and materials to which they are applied. As a result, many researchers in industry and in academia now come into contact with AES and XPS not as specialists, but as users.

Book Analytical Electron Microscopy for Materials Science

Download or read book Analytical Electron Microscopy for Materials Science written by DAISUKE Shindo and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical electron microscopy is one of the most powerful tools today for characterization of the advanced materials that support the nanotechnology of the twenty-first century. In this book the authors clearly explain both the basic principles and the latest developments in the field. In addition to a fundamental description of the inelastic scattering process, an explanation of the constituent hardware is provided. Standard quantitative analytical techniques employing electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy are also explained, along with elemental mapping techniques. Included are sections on convergent beam electron diffraction and electron holography utilizing the field emission gun. With generous use of illustrations and experimental data, this book is a valuable resource for anyone concerned with materials characterization, electron microscopy, materials science, crystallography, and instrumentation.

Book Spectroscopy for Materials Characterization

Download or read book Spectroscopy for Materials Characterization written by Simonpietro Agnello and published by John Wiley & Sons. This book was released on 2021-09-08 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: SPECTROSCOPY FOR MATERIALS CHARACTERIZATION Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience In Spectroscopy for Materials Characterization, accomplished researcher Simonpietro Agnello delivers a practical and accessible compilation of various spectroscopy techniques taught and used to today. The book offers a wide-ranging approach taught by leading researchers working in physics, chemistry, surface science, and nanoscience. It is ideal for both new students and advanced researchers studying and working with spectroscopy. Topics such as confocal and two photon spectroscopy, as well as infrared absorption and Raman and micro-Raman spectroscopy, are discussed, as are thermally stimulated luminescence and spectroscopic studies of radiation effects on optical materials. Each chapter includes a basic introduction to the theory necessary to understand a specific technique, details about the characteristic instrumental features and apparatuses used, including tips for the appropriate arrangement of a typical experiment, and a reproducible case study that shows the discussed techniques used in a real laboratory. Readers will benefit from the inclusion of: Complete and practical case studies at the conclusion of each chapter to highlight the concepts and techniques discussed in the material Citations of additional resources ideal for further study A thorough introduction to the basic aspects of radiation matter interaction in the visible-ultraviolet range and the fundamentals of absorption and emission A rigorous exploration of time resolved spectroscopy at the nanosecond and femtosecond intervals Perfect for Master and Ph.D. students and researchers in physics, chemistry, engineering, and biology, Spectroscopy for Materials Characterization will also earn a place in the libraries of materials science researchers and students seeking a one-stop reference to basic and advanced spectroscopy techniques.

Book The Handbook of Surface Imaging and Visualization

Download or read book The Handbook of Surface Imaging and Visualization written by Arthur T. Hubbard and published by . This book was released on 1995 with total page 909 pages. Available in PDF, EPUB and Kindle. Book excerpt: Angle-resolved auger electron spectroscopy; Atomic force microscopy; Auger electron spectroscopy; Chemical imaging using ion microscopy; Collision-induced surface processes; Depth profiling; Electrochemical epitaxy; Electrochemical nucleation; Electrochemical quartz crystal microbalance studies of electroactive surface films; Electron beam lithography; Electron microscopy; Electron simulated desorption-ion angular distribution 9ESDIAD); Field emission ion sources for focused ion beams; Field emission microscopy; Field ion microscopy and spectroscopy; Fluid-fluid interfaces: optical imaging of capillary systems; Fullerenes viewed by scanning tunneling microscopy, photoemission, and inverse photoemisssion; High-resolution electron energy loss spectroscopy; Imaging of colloidal particles; Infrared attenuated total reflection spectroscopy of surface active species; Infrared spectroscopy of surfaces; Langmuir-Blodgett films; LEED pattern directory; Low-energy electron diffraction: some basic conceptual tools; Low-energy electron microscopy; Low-energy ion scatteing spectroscopy; Magnetism in low-dimensional systems: magnetic properties of thin films; Metal clusters on oxides; Metal surface reconstructions; Molecular beam epitaxy; Molecular beam scattering: diffraction; Molecular bem scattering: reactive scattering; Molecular orbital theory of surfaces; Molecular orientation; Monitoring surface chemistry with optical second harmonic generation; Monolayer surface structures; Mössbauer effect spectroscopy; Nuclear magnetic resonance; Optical holographic imaging; Optical imaging of particles; Optically detected electron spin resonance of aromatic ketones adsorbed on surfaces; Organic molecular beam epitaxy; Photoelectron emission microscopy; Picosecond luminescence studies of recombination dynamics at GaAs/electrolyte interfaces; positron annihilation induced auger electron spectroscopy; Radiotracer study of electrode surfaces; raman spectroscopy of surfaces; Scanning electrochemical microscopy; Scanning X-ray photoelectron microscopy (SXPEM); Secondary ion mass spectrometry; Self-assembled monolayers: models for organci surface chemistry; Self-assembled monolayers: models of organic interfaces; Semiconductor thin film growth dynamics during molecular beam epitaxy; Sum-frequency generation studies of bonding and reaction at interfaces; Surface catalysis on metals; Surface-enhanced raman spectroscopy of flexible molecules; Surface forces; Thermal desorption mas spectrometry; Tunneling spectroscopy; Vibrational microspectroscopy for the analysis of surfaces and particles on surfaces; X-ray photoelectron diffracton; X-ray photoelectron spectroscopy; X-ray standing waves on surfaces.

Book Electron Spectroscopy for Surface Analysis

Download or read book Electron Spectroscopy for Surface Analysis written by H. Ibach and published by Springer. This book was released on 1977-03-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of surface physics and surface chemistry as a science is closely related to the technical development of a number of methods involving electrons either as an excitation source or as an emitted particle carrying characteristic information. Many of these various kinds of electron spectroscopies have become commercially available and have made their way into industrial laboratories. Others are still in an early stage, but may become of increasing importance in the future. In this book an assessment of the various merits and possible drawbacks of the most frequently used electron spectroscopies is attempted. Emphasis is put on prac tical examples and experimental design rather than on theoretical considerations. The book addresses itself to the reader who wishes to know which electron spectroscopy or which combination of different electron spectroscopies he may choose for the particular problems under investigation. After a brief introduction the practical design of electron spectrometers and their figures of merit important for the different applications are discussed in Chapter 2. Chapter 3 deals with electron excited electron spectroscopies which are used for the elemental analysis of surfaces. Structure analysis by electron diffrac tion is described in Chapter 4 with special emphasis on the use of electron diffrac tion for the investigation of surface imperfections. For the application of electron diffraction to surface crystallography in general, the reader is referred to Volume 4 of "Topics in Applied Physics".

Book Surface Analysis Methods in Materials Science

Download or read book Surface Analysis Methods in Materials Science written by John O'Connor and published by Springer Science & Business Media. This book was released on 2003-04-23 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide to the use of surface analysis techniques, now in its second edition, has expanded to include more techniques, current applications and updated references. It outlines the application of surface analysis techniques to a broad range of studies in materials science and engineering. The book consists of three parts: an extensive introduction to the concepts of surface structure and composition, a techniques section describing 19 techniques and a section on applications. This book is aimed at industrial scientists and engineers in research and development. The level and content of this book make it ideal as a course text for senior undergraduate and postgraduate students in materials science, materials engineering, physics, chemistry and metallurgy.