EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Reentrant Insulating State in Ultrathin Manganite Films

Download or read book Reentrant Insulating State in Ultrathin Manganite Films written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The transport and magnetic properties of La{sub 0.7}Sr{sub 0.3}MnO3 thin-films grown by pulsed laser deposition on (LaAlO3){sub 0.3}(SrAl{sub 0.5}Ta{sub 0.5}O3){sub 0.7} single crystal substrates have been investigated. A systematic series with various thicknesses of La{sub 0.7}Sr{sub 0.3}MnO3 was used to establish a phase diagram - which showed a clear difference compared to films grown on SrTiO3 substrates, highlighting the importance of film thickness and substrate strain. At 8 unit cells, the boundary between the metallic and insulating ground states, a second abrupt metal-insulator transition was observed at low temperatures, which could be tuned with by magnetic field, and is interpreted as a signature of electronic phase separation.

Book Colossal Magnetoresistance in Ultrathin Manganite Films

Download or read book Colossal Magnetoresistance in Ultrathin Manganite Films written by Peter Johnsson and published by . This book was released on 2000 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topological and Electronic Properties of Electron doped Manganite Thin Films

Download or read book Topological and Electronic Properties of Electron doped Manganite Thin Films written by Lorenzo Vistoli and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxide thin films feature a wide range of physical phenomena and rich phase diagrams tunable by strain and interface engineering. CaMnO3, in particular, is extremely sensitive to both doping and strain and, when grown with compressive strain, transitions from an insulating and antiferromagnetic state to a metallic and weakly ferromagnetic state at only 2% Ce doping.We used a combination of angle-resolved photoemission spectroscopy, magnetotransport, and density functional theory to study the electronic properties of this material. We observed the existence of two separate charge carriers, light electrons and heavy polarons, whose physical nature differs because of drastically different couplings to phonons. We ascribe these differences to a different relative band filling due to correlations, which enhance greatly the coupling to phonons of the heavy polarons band. Magnetotransport experiments reveal that the polaron band dominates transport despite its lower mobility.Compressive strain also gives rise to a strong magnetic anisotropy which stabilizes magnetic bubbles that accompany a topological Hall effect. This suggests that these bubbles have topological character, i.e. are skyrmion bubbles. The topological Hall effect diverges as the manganite approaches the metal-insulator transition at low dopings. We used a recently developed theory in order to interpret this behavior, and we conclude that correlations may come into play, enhancing the effective mass of the carriers, and in turn the topological Hall effect.As this manganite is highly sensitive to changes in doping and carrier density, we grew BiFeO3/(Ca,Ce)MnO3 ferroelectric field-effect transistors. Upon switching the ferroelectric polarization of the BiFeO3 top layer, we could not observe any sizable changes in the properties of the underlying manganite layers. We used transmission electron microscopy to study the properties of these bilayers with an atomic resolution, and we observed that polarization pinning at the BiFeO3/(Ca,Ce)MnO3 impedes a complete switch of the polarization and so reduces the operational capabilities of these devices. Nevertheless, we could detect modifications of the electronic properties of the manganite induced by polarization reversal at the atomic scale.

Book Colossal Magnetoresistive Manganites

Download or read book Colossal Magnetoresistive Manganites written by Tapan Chatterji and published by Springer Science & Business Media. This book was released on 2004-02-29 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive account of the present understanding of an important class of perovskite oxide materials with potential industrial applications. The chapters are written by well-known scientists who are on the forefront of the field and have directly contributed to its recent progress. Special care has been taken to maintain a balance between the space devoted to new experimental results and that devoted to recent theoretical developments. The book contains recent experimental and theoretical results on colossal magnetoresistive (CMR) manganites not covered by any other book in the field, and hence this will be very beneficial to graduate students and researchers in condensed matter and applied physics, materials science and solid state chemistry.

Book Chemical Abstracts

Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2626 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spin Waves and Magnetic Excitations

Download or read book Spin Waves and Magnetic Excitations written by and published by Elsevier. This book was released on 2012-12-02 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Problems in Condensed Matter Sciences, Volume 22.1: Spin Waves and Magnetic Excitations, Part I focuses on the principles, methodologies, approaches, and reactions involved in spin waves and magnetic excitations, including, Brillouin-Mandelstam light scattering, optical magnetic excitations, and magnetic dielectrics. The selection first elaborates on spin waves in magnetic dielectrics current status of the theory and light scattering from spin waves. Discussions focus on magneto-optic effects and the mechanism of light scattering in magnets, Brillouin-Mandelstam light scattering, Raman scattering, Collinear Heisenberg ferromagnet, low-temperature phase transitions, and low-dimensional systems. The text then ponders on optical magnetic excitations, spin waves above the threshold of parametric excitations, and theory of spin excitations in rare earth systems. Topics include Hamiltonian for rare earth systems, parametric instability of spin waves in magnetic dielectrics, nonstationary processes in parametric excitation of spin waves, radiative decay of magnetic excitons, and mechanism of the generation of magnetic excitations by light. The book tackles 4f moments and their interaction with conduction electrons and neutron scattering studies of magnetic excitations in itinerant magnets, including magnetic excitations at finite and low temperatures, paramagnetic scattering, coupling to conduction electrons, and virtual magnetic excitations. The selection is highly recommended for researchers wanting to study spin waves and magnetic excitations.

Book Spin Electronics

Download or read book Spin Electronics written by Michael Ziese and published by Springer. This book was released on 2007-06-30 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: For 50 years conventional electronics has ignored the electron spin. The manipulation and utilisation of the electron spin heralds an exciting and rapidly changing era in electronics, combining the disciplines of magnetism and traditional electronics. The first generation of "spintronic" devices (such as read heads based on giant magnetoresistance or non-volatile magnetic random access memories) have already gained dominant positions in the market place. This volume, the first of its kind on spin electronics describes all the essential topics for new researchers entering the field. It covers magnetism and semiconductor basics, micromagnetism, experimental techniques, materials science, device fabrication and new developments in spin-dependent processes. At the end of most chapters are a number of exercises and worked problems to aid the reader in understanding this fascinating new field.

Book Physics of Transition Metal Oxides

Download or read book Physics of Transition Metal Oxides written by Sadamichi Maekawa and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.

Book Ordering Phenomena in Rare Earth Nickelate Heterostructures

Download or read book Ordering Phenomena in Rare Earth Nickelate Heterostructures written by Matthias Hepting and published by Springer. This book was released on 2017-06-28 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents an experimental study of ordering phenomena in rare-earth nickelate-based heterostructures by means of inelastic Raman light scattering and elastic resonant x-ray scattering (RXS). Further, it demonstrates that the amplitude ratio of magnetic moments at neighboring nickel sites can be accurately determined by RXS in combination with a correlated double cluster model, and controlled experimentally through structural pinning of the oxygen positions in the crystal lattice. The two key outcomes of the thesis are: (a) demonstrating full control over the charge/bond and spin order parameters in specifically designed praseodymium nickelate heterostructures and observation of a novel spin density wave phase in absence of the charge/bond order parameter, which confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons; and (b) assessing the thickness-induced crossover between collinear and non-collinear spin structures in neodymium nickelate slabs, which is correctly predicted by drawing on density functional theory.

Book Disorder and Strain Induced Complexity in Functional Materials

Download or read book Disorder and Strain Induced Complexity in Functional Materials written by Tomoyuki Kakeshita and published by Springer Science & Business Media. This book was released on 2011-10-27 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together an emerging consensus on our understanding of the complex functional materials including ferroics, perovskites, multiferroics, CMR and high-temperature superconductors. The common theme is the existence of many competing ground states and frustration as a collusion of spin, charge, orbital and lattice degrees of freedom in the presence of disorder and (both dipolar and elastic) long-range forces. An important consequence of the complex unit cell and the competing interactions is that the emergent materials properties are very sensitive to external fields thus rendering these materials with highly desirable, technologically important applications enabled by cross-response.

Book Novel Superconductivity

Download or read book Novel Superconductivity written by Stuart A. Wolf and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1086 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Novel Mechanisms of Superconductivity Conference was initially conceived in the early part of 1986 as a small, 2-1/2 day workshop of 40-70 scientists, both theorists and experimentalists interested in exploring the possible evidence for exotic, non phononic superconductivity. Of course, the historic discoveries of high temperature oxide superconductors by Bednorz and Mftller and the subsequent enhancements by the Houston/Alabama groups made such a small conference impractical. The conference necessarily had to expand, 2-1/2 days became 4-1/2 days and superconductivity in the high Tc oxides became the largest single topic in the workshop. In fact, this conference became the first major conference on this topic and thus, these proceedings are also the first maj or publication. However, heavy fermion, organic and low carrier concentration superconductors remained a very important part of this workshop and articles by the leaders in these fields are included in these proceedings. Ultimately the workshop hosted rearly 400 scientists, students and media including representatives from the maj or research groups in the U.S., Europe, Japan and the Soviet Union.

Book Physics of Manganites

    Book Details:
  • Author : T.A. Kaplan
  • Publisher : Springer Science & Business Media
  • Release : 1999-05-31
  • ISBN : 0306461323
  • Pages : 299 pages

Download or read book Physics of Manganites written by T.A. Kaplan and published by Springer Science & Business Media. This book was released on 1999-05-31 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involves chemistry, physics, materials science and engineering, with length scales ranging from Ångstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up to date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M. F. Thorpe, Series Editor E mail: thorpe@pa. msu. edu V PREFACE This book records invited lectures given at the workshop on Physics of Manganites, held at Michigan State University, July 26 29, 1998. Doped manganites are an interesting class of compounds that show both metal insulator and ferromagnetic to paramagnetic transitions at the same temperature. This was discovered in the early 1950s by Jonker and van Santen and basic theoretical ideas were developed by Zener (1951), Anderson and Hasegawa (1955), and deGennes (1960) to explain these transitions and related interesting observations.

Book Spintronics   from GMR to Quantum Information

Download or read book Spintronics from GMR to Quantum Information written by Stefan Blügel and published by . This book was released on 2009 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fundamentals and Frontiers of the Josephson Effect

Download or read book Fundamentals and Frontiers of the Josephson Effect written by Francesco Tafuri and published by Springer Nature. This book was released on 2019-09-17 with total page 859 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and up-to-date description of the Josephson effect, a topic of never-ending interest in both fundamental and applied physics. In this volume, world-renowned experts present the unique aspects of the physics of the Josephson effect, resulting from the use of new materials, of hybrid architectures and from the possibility of realizing nanoscale junctions. These new experimental capabilities lead to systems where novel coherent phenomena and transport processes emerge. All this is of great relevance and impact, especially when combined with the didactic approach of the book. The reader will benefit from a general and modern view of coherent phenomena in weakly-coupled superconductors on a macroscopic scale. Topics that have been only recently discussed in specialized papers and in short reviews are described here for the first time and organized in a general framework. An important section of the book is also devoted to applications, with focus on long-term, future applications. In addition to a significant number of illustrations, the book includes numerous tables for comparative studies on technical aspects.

Book Nanoscale Magnetic Materials and Applications

Download or read book Nanoscale Magnetic Materials and Applications written by J. Ping Liu and published by Springer Science & Business Media. This book was released on 2010-04-05 with total page 731 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoscale Magnetic Materials and Applications covers exciting new developments in the field of advanced magnetic materials. Readers will find valuable reviews of the current experimental and theoretical work on novel magnetic structures, nanocomposite magnets, spintronic materials, domain structure and domain-wall motion, in addition to nanoparticles and patterned magnetic recording media. Cutting-edge applications in the field are described by leading experts from academic and industrial communities. These include new devices based on domain wall motion, magnetic sensors derived from both giant and tunneling magnetoresistance, thin film devices in micro-electromechanical systems, and nanoparticle applications in biomedicine. In addition to providing an introduction to the advances in magnetic materials and applications at the nanoscale, this volume also presents emerging materials and phenomena, such as magnetocaloric and ferromagnetic shape memory materials, which motivate future development in this exciting field. Nanoscale Magnetic Materials and Applications also features a foreword written by Peter Grünberg, recipient of the 2007 Nobel Prize in Physics.

Book Ferromagnetic Resonance

    Book Details:
  • Author : Dr. Orhan Yalçın
  • Publisher : BoD – Books on Demand
  • Release : 2013-07-31
  • ISBN : 9535111868
  • Pages : 252 pages

Download or read book Ferromagnetic Resonance written by Dr. Orhan Yalçın and published by BoD – Books on Demand. This book was released on 2013-07-31 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book Ferromagnetic Resonance - Theory and Applications highlights recent advances at the interface between the science and technology of nanostructures (bilayer-multilayers, nanowires, spinel type nanoparticles, photonic crystal, etc.). The electromagnetic resonance techniques have become a central field of modern scientific and technical activity. The modern technical applications of ferromagnetic resonance are in spintronics, electronics, space navigation, remote-control equipment, radio engineering, electronic computers, maritime, electrical engineering, instrument-making and geophysical methods of prospecting.

Book Physics and Chemistry of Low Dimensional Inorganic Conductors

Download or read book Physics and Chemistry of Low Dimensional Inorganic Conductors written by C. Schlenker and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of low-dimensional conductors has been very active for more than twenty years. It has grown continuously and both the inorganic and organic materials have remark able properties, such as charge and spin density waves and superconductivity. The discovery of superconductivity at high temperature in copper-based quasi two-dimensional conducting oxides nearly ten years ago has further enlarged the field and stimulated new research on inorganic conductors. It was obviously impossible to cover such a broad field in a ten day Institute and it seemed pertinent to concentrate on inorganic conductors, excluding the high Tc superconducting oxides. In this context, it was highly desirable to include both physics and chemistry in the same Institute in order to tighten or in some cases to establish links between physicists and chemists. This Advanced Study Institute is the continuation of a series of similar ones which have taken place every few years since 1974. 73 participants coming from 13 countries have taken part in this School at the beautiful site of the Centre de Physique des Houches in the Mont-Blanc mountain range. The scientific programme included more than forty lectures and seminars, two poster sessions and ten short talks. Several discussion sessions were organized for the evenings, one on New Materials, one on New Topics and one on the special problem of the Fermi and Luttinger liquids. The scientific activity was kept high from the beginning to the end of the Institute.