EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Reduced Order Modeling  Nonlinear Analysis and Control Methods for Flow Control Problems

Download or read book Reduced Order Modeling Nonlinear Analysis and Control Methods for Flow Control Problems written by Cosku Kasnakoglu and published by . This book was released on 2007 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: Flow control refers to the ability to manipulate fluid flow so as to achieve a desired change in its behavior, which offers many potential technological benefits, such as reducing fuel costs for vehicles and improving effectiveness of industrial processes. An interesting case of flow control is cavity flow control, which has been the motivation of this study: When air flow passes over a shallow cavity a strong resonance is produced by a natural feedback mechanism, scattering acoustic waves that propagate upstream and reach the shear layer, and developing flow structures. These cause many practical problems including damage and fatigue in landing gears and weapons bays in aircrafts. Presently there is a lack of sufficient mathematical analysis and control design tools for flow control problems. This includes mathematical models that are amenable to control design. Recently reduced-order modeling techniques, such as those based on proper orthogonal decomposition (POD) and Galerkin projection (GP), have come to interest. However, a main issue with these models is that the effect of boundary conditions, which is where the control input is, gets embedded into system coefficients. This results in a form quite different from what one deals with in standard control systems framework, which is a set of ordinary differential equations (ODE) where the input appears as an explicit term. Another issue with the standard POD/GP models is that they do not yield to systems that have any apparent structure in their coefficients. This leaves one with little choice other than to neglect the nonlinearities of the models and employ standard linear control theory based designs. The research presented in this thesis makes an effort at closing the gaps mentioned above by 1) presenting a reduced-order modeling method utilizing a novel technique for input separation on POD/GP models, 2) introducing a technique based on averaging theory and center manifold theory so as to reveal certain structures embedded in the model, and 3) developing nonlinear analysis and control design approaches for the resulting model. The theory is complemented by examples and case studies as appropriate, including the case of cavity flow control.

Book Reduced Order Modelling for Flow Control

Download or read book Reduced Order Modelling for Flow Control written by Bernd R. Noack and published by Springer Science & Business Media. This book was released on 2011-05-25 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book focuses on the physical and mathematical foundations of model-based turbulence control: reduced-order modelling and control design in simulations and experiments. Leading experts provide elementary self-consistent descriptions of the main methods and outline the state of the art. Covered areas include optimization techniques, stability analysis, nonlinear reduced-order modelling, model-based control design as well as model-free and neural network approaches. The wake stabilization serves as unifying benchmark control problem.

Book Reduced Order Methods for Modeling and Computational Reduction

Download or read book Reduced Order Methods for Modeling and Computational Reduction written by Alfio Quarteroni and published by Springer. This book was released on 2014-06-05 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

Book Model Reduction of Complex Dynamical Systems

Download or read book Model Reduction of Complex Dynamical Systems written by Peter Benner and published by Springer Nature. This book was released on 2021-08-26 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems – MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.

Book Data Driven Science and Engineering

Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Book Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics

Download or read book Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics written by Gianluigi Rozza and published by SIAM. This book was released on 2022-11-21 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reduced order modeling is an important, growing field in computational science and engineering, and this is the first book to address the subject in relation to computational fluid dynamics. It focuses on complex parametrization of shapes for their optimization and includes recent developments in advanced topics such as turbulence, stability of flows, inverse problems, optimization, and flow control, as well as applications. This book will be of interest to researchers and graduate students in the field of reduced order modeling.

Book Falling Liquid Films

    Book Details:
  • Author : S. Kalliadasis
  • Publisher : Springer Science & Business Media
  • Release : 2011-09-24
  • ISBN : 1848823673
  • Pages : 446 pages

Download or read book Falling Liquid Films written by S. Kalliadasis and published by Springer Science & Business Media. This book was released on 2011-09-24 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Falling Liquid Films gives a detailed review of state-of-the-art theoretical, analytical and numerical methodologies, for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar inclined substrate. This prototype is an open-flow hydrodynamic instability, that represents an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. It will also be of use for a more general understanding of specific events characterizing the transition to spatio-temporal chaos and weak/dissipative turbulence. Particular emphasis is given to low-dimensional approximations for such flows through a hierarchy of modeling approaches, including equations of the boundary-layer type, averaged formulations based on weighted residuals approaches and long-wave expansions. Whenever possible the link between theory and experiment is illustrated, and, as a further bridge between the two, the development of order-of-magnitude estimates and scaling arguments is used to facilitate the understanding of basic, underlying physics. This monograph will appeal to advanced graduate students in applied mathematics, science or engineering undertaking research on interfacial fluid mechanics or studying fluid mechanics as part of their program. It will also be of use to researchers working on both applied, fundamental theoretical and experimental aspects of thin film flows, as well as engineers and technologists dealing with processes involving isothermal or heated films. This monograph is largely self-contained and no background on interfacial fluid mechanics is assumed.

Book Model Order Reduction  Theory  Research Aspects and Applications

Download or read book Model Order Reduction Theory Research Aspects and Applications written by Wilhelmus H. Schilders and published by Springer Science & Business Media. This book was released on 2008-08-27 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.

Book Snapshot Based Methods and Algorithms

Download or read book Snapshot Based Methods and Algorithms written by Peter Benner and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-12-16 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.

Book Flow Control by Feedback

Download or read book Flow Control by Feedback written by Ole Morten Aamo and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible book pioneers feedback concepts for control mixing. It reviews research results appearing over the last decade, and contains control designs for stabilization of channel, pipe and bluff body flows, as well as control designs for the opposite problem of mixing enhancement.

Book Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Download or read book Certified Reduced Basis Methods for Parametrized Partial Differential Equations written by Jan S Hesthaven and published by Springer. This book was released on 2015-08-20 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.

Book The MEMS Handbook

Download or read book The MEMS Handbook written by Mohamed Gad-el-Hak and published by CRC Press. This book was released on 2001-09-27 with total page 1386 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revolution is well underway. Our understanding and utilization of microelectromechanical systems (MEMS) are growing at an explosive rate with a worldwide market approaching billions of dollars. In time, microdevices will fill the niches of our lives as pervasively as electronics do right now. But if these miniature devices are to fulfill their mammoth potential, today's engineers need a thorough grounding in the underlying physics, modeling techniques, fabrication methods, and materials of MEMS. The MEMS Handbook delivers all of this and more. Its team of authors-unsurpassed in their experience and standing in the scientific community- explore various aspects of MEMS: their design, fabrication, and applications as well as the physical modeling of their operations. Designed for maximum readability without compromising rigor, it provides a current and essential overview of this fledgling discipline.

Book NASA Technical Paper

Download or read book NASA Technical Paper written by and published by . This book was released on 1979 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Interpolatory Methods for Model Reduction

Download or read book Interpolatory Methods for Model Reduction written by A. C. Antoulas and published by SIAM. This book was released on 2020-01-13 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.

Book Reduced Order Modeling  ROM  for Simulation and Optimization

Download or read book Reduced Order Modeling ROM for Simulation and Optimization written by Winfried Keiper and published by Springer. This book was released on 2018-04-11 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited monograph collects research contributions and addresses the advancement of efficient numerical procedures in the area of model order reduction (MOR) for simulation, optimization and control. The topical scope includes, but is not limited to, new out-of-the-box algorithmic solutions for scientific computing, e.g. reduced basis methods for industrial problems and MOR approaches for electrochemical processes. The target audience comprises research experts and practitioners in the field of simulation, optimization and control, but the book may also be beneficial for graduate students alike.

Book Model Reduction of Parametrized Systems

Download or read book Model Reduction of Parametrized Systems written by Peter Benner and published by Springer. This book was released on 2017-09-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).

Book Control Oriented Nonlinear Model Reduction for Distributed Parameter Systems

Download or read book Control Oriented Nonlinear Model Reduction for Distributed Parameter Systems written by Samir S. Sahyoun and published by . This book was released on 2017 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of model reduction techniques for physical systems modeled by partial differential equations (PDEs) has been a very active research area. Large number of states is needed to accurately capture the dynamics of such systems which makes them unsuitable for control design. The order of the system must be reduced prior to control design. In this dissertation, new methods that generalize the popular proper orthogonal decomposition (POD) to nonlinear PDEs are investigated. In particular, cluster based POD algorithms are developed and applied to the one and two dimensional Burgers equations that govern a nonlinear convective flow. Each cluster contains relatively close in distance dynamic behavior within itself, and considerably far with respect to other clusters. Three different clustering schemes in time, space and space-time are proposed. A complete and detailed approach for the Orthogonal Locality Preserving Projections (OLPP) modes computation for the incompressible Navier-Stokes PDE that governs the dynamics of the NACA 0015 airfoil fluid flow is presented. Close snapshots in the full order model are forced to stay close in the reduced order model by defining an optimization problem that preserves local distances. Optimal boundary control laws are derived based on the proposed nonlinear reduced order models, and applied to various distributed parameter systems including: Nonlinear convection, temperature control in energy efficient buildings systems governed by the heat equation, power and voltage control in large electromechanical oscillations in the power grid governed by the wave equation, and flow separation control for fluid flows governed by the Navier-Stokes equations.