Download or read book Recent Advances in Diffeologies and Their Applications written by Jean-Pierre Magnot and published by American Mathematical Society. This book was released on 2024-02-02 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS-EMS-SMF Special Session on Recent Advances in Diffeologies and Their Applications, held from July 18–20, 2022, at the Université de Grenoble-Alpes, Grenoble, France. The articles present some developments of the theory of diffeologies applied in a broad range of topics, ranging from algebraic topology and higher homotopy theory to integrable systems and optimization in PDE. The geometric framework proposed by diffeologies is known to be one of the most general approaches to problems arising in several areas of mathematics. It can adapt to many contexts without major technical difficulties and produce examples inaccessible by other means, in particular when studying singularities or geometry in infinite dimension. Thanks to this adaptability, diffeologies appear to have become an interesting and useful language for a growing number of mathematicians working in many different fields. Some articles in the volume also illustrate some recent developments of the theory, which makes it even more deep and useful.
Download or read book Recent Advances in Noncommutative Algebra and Geometry written by K. A. Brown and published by American Mathematical Society. This book was released on 2024-05-30 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the conference Recent Advances and New Directions in the Interplay of Noncommutative Algebra and Geometry, held from June 20–24, 2022, at the University of Washington, Seattle, in honor of S. Paul Smith's 65th birthday. The articles reflect the wide interests of Smith and provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Hopf algebras and quantum groups, the elliptic algebras of Feigin and Odesskii, Calabi-Yau algebras, Artin-Schelter regular algebras, deformation theory, and Lie theory. In addition to original research contributions the volume includes an introductory essay reviewing Smith's research contributions in these fields, and several survey articles.
Download or read book Advances in Functional Analysis and Operator Theory written by Marat V. Markin and published by American Mathematical Society. This book was released on 2024-04-09 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS-EMS-SMF Special Session on Advances in Functional Analysis and Operator Theory, held July 18–22, 2022, at the Université de Grenoble-Alpes, Grenoble, France. The papers reflect the modern interplay between differential equations, functional analysis, operator algebras, and their applications from the dynamics to quantum groups to number theory. Among the topics discussed are the Sturm-Liouville and boundary value problems, axioms of quantum mechanics, $C^{*}$-algebras and symbolic dynamics, von Neumann algebras and low-dimensional topology, quantum permutation groups, the Jordan algebras, and the Kadison–Singer transforms.
Download or read book Recent Developments in Fractal Geometry and Dynamical Systems written by Sangita Jha and published by American Mathematical Society. This book was released on 2024-04-18 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the virtual AMS Special Session on Fractal Geometry and Dynamical Systems, held from May 14–15, 2022. The content covers a wide range of topics. It includes nonautonomous dynamics of complex polynomials, theory and applications of polymorphisms, topological and geometric problems related to dynamical systems, and also covers fractal dimensions, including the Hausdorff dimension of fractal interpolation functions. Furthermore, the book contains a discussion of self-similar measures as well as the theory of IFS measures associated with Bratteli diagrams. This book is suitable for graduate students interested in fractal theory, researchers interested in fractal geometry and dynamical systems, and anyone interested in the application of fractals in science and engineering. This book also offers a valuable resource for researchers working on applications of fractals in different fields.
Download or read book Moduli Spaces and Vector Bundles New Trends written by Peter Gothen and published by American Mathematical Society. This book was released on 2024-07-18 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the VBAC 2022 Conference on Moduli Spaces and Vector Bundles—New Trends, held in honor of Peter Newstead's 80th birthday, from July 25–29, 2022, at the University of Warwick, Coventry, United Kingdom. The papers focus on the theory of stability conditions in derived categories, non-reductive geometric invariant theory, Brill-Noether theory, and Higgs bundles and character varieties. The volume includes both survey and original research articles. Most articles contain substantial background and will be helpful to both novices and experts.
Download or read book A Glimpse into Geometric Representation Theory written by Mahir Bilen Can and published by American Mathematical Society. This book was released on 2024-08-07 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Combinatorial and Geometric Representation Theory, held virtually on November 20–21, 2021. The articles offer an engaging look into recent advancements in geometric representation theory. Despite diverse subject matters, a common thread uniting the articles of this volume is the power of geometric methods. The authors explore the following five contemporary topics in geometric representation theory: equivariant motivic Chern classes; equivariant Hirzebruch classes and equivariant Chern-Schwartz-MacPherson classes of Schubert cells; locally semialgebraic spaces, Nash manifolds, and their superspace counterparts; support varieties of Lie superalgebras; wreath Macdonald polynomials; and equivariant extensions and solutions of the Deligne-Simpson problem. Each article provides a well-structured overview of its topic, highlighting the emerging theories developed by the authors and their colleagues.
Download or read book Higher Structures in Topology Geometry and Physics written by Ralph M. Kaufmann and published by American Mathematical Society. This book was released on 2024-07-03 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS Special Session on Higher Structures in Topology, Geometry, and Physics, held virtually on March 26–27, 2022. The articles give a snapshot survey of the current topics surrounding the mathematical formulation of field theories. There is an intricate interplay between geometry, topology, and algebra which captures these theories. The hallmark are higher structures, which one can consider as the secondary algebraic or geometric background on which the theories are formulated. The higher structures considered in the volume are generalizations of operads, models for conformal field theories, string topology, open/closed field theories, BF/BV formalism, actions on Hochschild complexes and related complexes, and their geometric and topological aspects.
Download or read book Deformation of Artinian Algebras and Jordan Type written by Anthony Iarrobino and published by American Mathematical Society. This book was released on 2024-09-06 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the AMS-EMS-SMF Special Session on Deformations of Artinian Algebras and Jordan Type, held July 18?22, 2022, at the Universit‚ Grenoble Alpes, Grenoble, France. Articles included are a survey and open problems on deformations and relation to the Hilbert scheme; a survey of commuting nilpotent matrices and their Jordan type; and a survey of Specht ideals and their perfection in the two-rowed case. Other articles treat topics such as the Jordan type of local Artinian algebras, Waring decompositions of ternary forms, questions about Hessians, a geometric approach to Lefschetz properties, deformations of codimension two local Artin rings using Hilbert-Burch matrices, and parametrization of local Artinian algebras in codimension three. Each of the articles brings new results on the boundary of commutative algebra and algebraic geometry.
Download or read book Diffeology written by Patrick Iglesias-Zemmour and published by American Mathematical Soc.. This book was released on 2013-04-09 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diffeology is an extension of differential geometry. With a minimal set of axioms, diffeology allows us to deal simply but rigorously with objects which do not fall within the usual field of differential geometry: quotients of manifolds (even non-Hausdorff), spaces of functions, groups of diffeomorphisms, etc. The category of diffeology objects is stable under standard set-theoretic operations, such as quotients, products, co-products, subsets, limits, and co-limits. With its right balance between rigor and simplicity, diffeology can be a good framework for many problems that appear in various areas of physics. Actually, the book lays the foundations of the main fields of differential geometry used in theoretical physics: differentiability, Cartan differential calculus, homology and cohomology, diffeological groups, fiber bundles, and connections. The book ends with an open program on symplectic diffeology, a rich field of application of the theory. Many exercises with solutions make this book appropriate for learning the subject.
Download or read book Hypergroup Theory written by Bijan Davvaz and published by World Scientific. This book was released on 2021-12-28 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an updated study of hypergroups, being structured on 12 chapters in starting with the presentation of the basic notions in the domain: semihypergroups, hypergroups, classes of subhypergroups, types of homomorphisms, but also key notions: canonical hypergroups, join spaces and complete hypergroups. A detailed study is dedicated to the connections between hypergroups and binary relations, starting from connections established by Rosenberg and Corsini. Various types of binary relations are highlighted, in particular equivalence relations and the corresponding quotient structures, which enjoy certain properties: commutativity, cyclicity, solvability.A special attention is paid to the fundamental beta relationship, which leads to a group quotient structure. In the finite case, the number of non-isomorphic Rosenberg hypergroups of small orders is mentioned. Also, the study of hypergroups associated with relations is extended to the case of hypergroups associated to n-ary relations. Then follows an applied excursion of hypergroups in important chapters in mathematics: lattices, Pawlak approximation, hypergraphs, topology, with various properties, characterizations, varied and interesting examples. The bibliography presented is an updated one in the field, followed by an index of the notions presented in the book, useful in its study.
Download or read book Towards the Mathematics of Quantum Field Theory written by Frédéric Paugam and published by Springer Science & Business Media. This book was released on 2014-02-20 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.
Download or read book Soliton Equations and Hamiltonian Systems written by L.A. Dickey and published by World Scientific. This book was released on 1991 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of soliton equations and integrable systems has developed rapidly during the last 20 years with numerous applications in mechanics and physics. For a long time books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this followed one single work by Gardner, Greene, Kruskal, and Miura about the Korteweg-de Vries equation (KdV) which, had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water.
Download or read book Optimization Algorithms on Matrix Manifolds written by P.-A. Absil and published by Princeton University Press. This book was released on 2009-04-11 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.
Download or read book Geometric Continuum Mechanics written by Reuven Segev and published by Springer Nature. This book was released on 2020-05-13 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume explores the applications of various topics in modern differential geometry to the foundations of continuum mechanics. In particular, the contributors use notions from areas such as global analysis, algebraic topology, and geometric measure theory. Chapter authors are experts in their respective areas, and provide important insights from the most recent research. Organized into two parts, the book first covers kinematics, forces, and stress theory, and then addresses defects, uniformity, and homogeneity. Specific topics covered include: Global stress and hyper-stress theories Applications of de Rham currents to singular dislocations Manifolds of mappings for continuum mechanics Kinematics of defects in solid crystals Geometric Continuum Mechanics will appeal to graduate students and researchers in the fields of mechanics, physics, and engineering who seek a more rigorous mathematical understanding of the area. Mathematicians interested in applications of analysis and geometry will also find the topics covered here of interest.
Download or read book Equivariant Cohomology Theories written by Glen E. Bredon and published by Springer. This book was released on 2006-11-14 with total page 72 pages. Available in PDF, EPUB and Kindle. Book excerpt: a
Download or read book Introduction to Smooth Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author has written several excellent Springer books.; This book is a sequel to Introduction to Topological Manifolds; Careful and illuminating explanations, excellent diagrams and exemplary motivation; Includes short preliminary sections before each section explaining what is ahead and why
Download or read book Morita Equivalence and Continuous Trace C Algebras written by Iain Raeburn and published by American Mathematical Soc.. This book was released on 1998 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern treatment of this complex mathematical topic for students beginning research in operator algebras as well as mathematical physicists. Topics include the algebra of compact operators, sheaves, cohomology, the Brauer group and group actions, and the imprimivity theorem. The authors assume a knowledge of C*-algebras, the Gelfand-Naimark Theorem, continuous functional calculus, positivity, and the GNS- construction. Annotation copyrighted by Book News, Inc., Portland, OR