EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Realization and Model Reduction of Dynamical Systems

Download or read book Realization and Model Reduction of Dynamical Systems written by Christopher Beattie and published by Springer Nature. This book was released on 2022-06-09 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book celebrates Professor Thanos Antoulas's 70th birthday, marking his fundamental contributions to systems and control theory, especially model reduction and, more recently, data-driven modeling and system identification. Model reduction is a prominent research topic with wide ranging scientific and engineering applications.

Book Interpolatory Methods for Model Reduction

Download or read book Interpolatory Methods for Model Reduction written by A. C. Antoulas and published by SIAM. This book was released on 2020-01-13 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.

Book Dimension Reduction of Large Scale Systems

Download or read book Dimension Reduction of Large Scale Systems written by Peter Benner and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decades, model reduction has become an ubiquitous tool in analysis and simulation of dynamical systems, control design, circuit simulation, structural dynamics, CFD, and many other disciplines dealing with complex physical models. The aim of this book is to survey some of the most successful model reduction methods in tutorial style articles and to present benchmark problems from several application areas for testing and comparing existing and new algorithms. As the discussed methods have often been developed in parallel in disconnected application areas, the intention of the mini-workshop in Oberwolfach and its proceedings is to make these ideas available to researchers and practitioners from all these different disciplines.

Book Approximation of Large Scale Dynamical Systems

Download or read book Approximation of Large Scale Dynamical Systems written by Athanasios C. Antoulas and published by SIAM. This book was released on 2009-06-25 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical models are used to simulate, and sometimes control, the behavior of physical and artificial processes such as the weather and very large-scale integration (VLSI) circuits. The increasing need for accuracy has led to the development of highly complex models. However, in the presence of limited computational accuracy and storage capabilities model reduction (system approximation) is often necessary. Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction, combining system theory with numerical linear algebra and computational considerations. It addresses the issue of model reduction and the resulting trade-offs between accuracy and complexity. Special attention is given to numerical aspects, simulation questions, and practical applications.

Book Model Order Reduction  Theory  Research Aspects and Applications

Download or read book Model Order Reduction Theory Research Aspects and Applications written by Wilhelmus H. Schilders and published by Springer Science & Business Media. This book was released on 2008-08-27 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.

Book Model Reduction and Approximation

Download or read book Model Reduction and Approximation written by Peter Benner and published by SIAM. This book was released on 2017-07-06 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.

Book Model Reduction of Parametrized Systems

Download or read book Model Reduction of Parametrized Systems written by Peter Benner and published by Springer. This book was released on 2017-09-05 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The special volume offers a global guide to new concepts and approaches concerning the following topics: reduced basis methods, proper orthogonal decomposition, proper generalized decomposition, approximation theory related to model reduction, learning theory and compressed sensing, stochastic and high-dimensional problems, system-theoretic methods, nonlinear model reduction, reduction of coupled problems/multiphysics, optimization and optimal control, state estimation and control, reduced order models and domain decomposition methods, Krylov-subspace and interpolatory methods, and applications to real industrial and complex problems. The book represents the state of the art in the development of reduced order methods. It contains contributions from internationally respected experts, guaranteeing a wide range of expertise and topics. Further, it reflects an important effor t, carried out over the last 12 years, to build a growing research community in this field. Though not a textbook, some of the chapters can be used as reference materials or lecture notes for classes and tutorials (doctoral schools, master classes).

Book Optimization and Dynamical Systems

Download or read book Optimization and Dynamical Systems written by Uwe Helmke and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is aimed at mathematics and engineering graduate students and researchers in the areas of optimization, dynamical systems, control sys tems, signal processing, and linear algebra. The motivation for the results developed here arises from advanced engineering applications and the emer gence of highly parallel computing machines for tackling such applications. The problems solved are those of linear algebra and linear systems the ory, and include such topics as diagonalizing a symmetric matrix, singular value decomposition, balanced realizations, linear programming, sensitivity minimization, and eigenvalue assignment by feedback control. The tools are those, not only of linear algebra and systems theory, but also of differential geometry. The problems are solved via dynamical sys tems implementation, either in continuous time or discrete time , which is ideally suited to distributed parallel processing. The problems tackled are indirectly or directly concerned with dynamical systems themselves, so there is feedback in that dynamical systems are used to understand and optimize dynamical systems. One key to the new research results has been the recent discovery of rather deep existence and uniqueness results for the solution of certain matrix least squares optimization problems in geomet ric invariant theory. These problems, as well as many other optimization problems arising in linear algebra and systems theory, do not always admit solutions which can be found by algebraic methods.

Book Seventh IUTAM Symposium on Laminar Turbulent Transition

Download or read book Seventh IUTAM Symposium on Laminar Turbulent Transition written by Philipp Schlatter and published by Springer Science & Business Media. This book was released on 2010-03-11 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The origins of turbulent ?ow and the transition from laminar to turbulent ?ow are the most important unsolved problems of ?uid mechanics and aerodynamics. - sides being a fundamental question of ?uid mechanics, there are numerous app- cations relying on information regarding transition location and the details of the subsequent turbulent ?ow. For example, the control of transition to turbulence is - pecially important in (1) skin-friction reduction of energy ef?cient aircraft, (2) the performance of heat exchangers and diffusers, (3) propulsion requirements for - personic aircraft, and (4) separation control. While considerable progress has been made in the science of laminar to turbulent transition over the last 30 years, the c- tinuing increase in computer power as well as new theoretical developments are now revolutionizing the area. It is now starting to be possible to move from simple 1D eigenvalue problems in canonical ?ows to global modes in complex ?ows, all - companied by accurate large-scale direct numerical simulations (DNS). Here, novel experimental techniques such as modern particle image velocimetry (PIV) also have an important role. Theoretically the in?uence of non-normality on the stability and transition is gaining importance, in particular for complex ?ows. At the same time the enigma of transition in the oldest ?ow investigated, Reynolds pipe ?ow tran- tion experiment, is regaining attention. Ideas from dynamical systems together with DNS and experiments are here giving us new insights.

Book Feedback Systems

Download or read book Feedback Systems written by Karl Johan Åström and published by Princeton University Press. This book was released on 2021-02-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory

Book Model Reduction of Nonlinear Mechanical Systems Via Optimal Projection and Tensor Approximation

Download or read book Model Reduction of Nonlinear Mechanical Systems Via Optimal Projection and Tensor Approximation written by Kevin Thomas Carlberg and published by Stanford University. This book was released on 2011 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the advent and maturation of high-performance computing, high-fidelity physics-based numerical simulations remain computationally intensive in many fields. As a result, such simulations are often impractical for time-critical applications such as fast-turnaround design, control, and uncertainty quantification. The objective of this thesis is to enable rapid, accurate analysis of high-fidelity nonlinear models to enable their use in time-critical settings. Model reduction presents a promising approach for realizing this goal. This class of methods generates low-dimensional models that preserves key features of the high-fidelity model. Such methods have been shown to generate fast, accurate solutions when applied to specialized problems such as linear time-invariant systems. However, model reduction techniques for highly nonlinear systems has been limited primarily to approaches based on the heuristic proper orthogonal decomposition (POD)--Galerkin approach. These methods often generate inaccurate responses because 1) POD--Galerkin does not generally minimize any measure of the system error, and 2) the POD basis is not constructed to minimize errors in the system's outputs of interest. Furthermore, simulation times for these models usually remain large, as reducing the dimension of a nonlinear system does not necessarily reduce its computational complexity. This thesis presents two model reduction techniques that addresses these shortcomings of the POD--Galerkin method. The first method is a `compact POD' approach for computing the small-dimensional trial basis; this approach is applicable to parameterized static systems. The compact POD basis is constructed using a goal-oriented framework that allows sensitivity derivatives to be employed as snapshots. The second method is a Gauss--Newton with approximated tensors (GNAT) method applicable to nonlinear systems. Similar to other POD-based approaches, the GNAT method first executes high-fidelity simulations during a costly `offline' stage; it computes a POD subspace that optimally represents the state as observed during these simulations. To compute fast, accurate `online' solutions, the method introduces two approximations that satisfy optimality and consistency conditions. First, the method decreases the system dimension by searching for the solutions in the low-dimensional POD subspace. As opposed to performing a Galerkin projection, the method handles the resulting overdetermined system of equations arising at each time step by formulating a least-squares problem; this ensures that a measure of the system error (i.e. the residual) is minimized. Second, the method decreases the model's computational complexity by approximating the residual and Jacobian using the `gappy POD' technique; this requires computing only a few rows of the approximated quantities. For computational mechanics problems, the GNAT method leads to the concept of a sample mesh: the subset of the mesh needed to compute the selected rows of the residual and Jacobian. Because the reduced-order model uses only the sample mesh for computations, the online stage requires minimal computational resources.

Book Model Reduction of Complex Dynamical Systems

Download or read book Model Reduction of Complex Dynamical Systems written by Peter Benner and published by Springer Nature. This book was released on 2021-08-26 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems – MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.

Book Computational Fluid and Solid Mechanics

Download or read book Computational Fluid and Solid Mechanics written by K.J. Bathe and published by Elsevier. This book was released on 2001-05-21 with total page 975 pages. Available in PDF, EPUB and Kindle. Book excerpt: The MIT mission - "to bring together Industry and Academia and to nurture the next generation in computational mechanics is of great importance to reach the new level of mathematical modeling and numerical solution and to provide an exciting research environment for the next generation in computational mechanics." Mathematical modeling and numerical solution is today firmly established in science and engineering. Research conducted in almost all branches of scientific investigations and the design of systems in practically all disciplines of engineering can not be pursued effectively without, frequently, intensive analysis based on numerical computations.The world we live in has been classified by the human mind, for descriptive and analysis purposes, to consist of fluids and solids, continua and molecules; and the analyses of fluids and solids at the continuum and molecular scales have traditionally been pursued separately. Fundamentally, however, there are only molecules and particles for any material that interact on the microscopic and macroscopic scales. Therefore, to unify the analysis of physical systems and to reach a deeper understanding of the behavior of nature in scientific investigations, and of the behavior of designs in engineering endeavors, a new level of analysis is necessary. This new level of mathematical modeling and numerical solution does not merely involve the analysis of a single medium but must encompass the solution of multi-physics problems involving fluids, solids, and their interactions, involving multi-scale phenomena from the molecular to the macroscopic scales, and must include uncertainties in the given data and the solution results. Nature does not distinguish between fluids and solids and does not ever repeat itself exactly.This new level of analysis must also include, in engineering, the effective optimization of systems, and the modeling and analysis of complete life spans of engineering products, from design to fabrication, to possibly multiple repairs, to end of service.

Book Model Reduction for Circuit Simulation

Download or read book Model Reduction for Circuit Simulation written by Peter Benner and published by Springer Science & Business Media. This book was released on 2011-03-25 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the device while requiring a significantly lower simulation time than the full model. With Model Reduction for Circuit Simulation we survey the state of the art in the challenging research field of MOR for ICs, and also address its future research directions. Special emphasis is taken on aspects stemming from miniturisations to the nano scale. Contributions cover complexity reduction using e.g., balanced truncation, Krylov-techniques or POD approaches. For semiconductor applications a focus is on generalising current techniques to differential-algebraic equations, on including design parameters, on preserving stability, and on including nonlinearity by means of piecewise linearisations along solution trajectories (TPWL) and interpolation techniques for nonlinear parts. Furthermore the influence of interconnects and power grids on the physical properties of the device is considered, and also top-down system design approaches in which detailed block descriptions are combined with behavioral models. Further topics consider MOR and the combination of approaches from optimisation and statistics, and the inclusion of PDE models with emphasis on MOR for the resulting partial differential algebraic systems. The methods which currently are being developed have also relevance in other application areas such as mechanical multibody systems, and systems arising in chemistry and to biology. The current number of books in the area of MOR for ICs is very limited, so that this volume helps to fill a gap in providing the state of the art material, and to stimulate further research in this area of MOR. Model Reduction for Circuit Simulation also reflects and documents the vivid interaction between three active research projects in this area, namely the EU-Marie Curie Action ToK project O-MOORE-NICE (members in Belgium, The Netherlands and Germany), the EU-Marie Curie Action RTN-project COMSON (members in The Netherlands, Italy, Germany, and Romania), and the German federal project System reduction in nano-electronics (SyreNe).

Book Reduced Order Methods for Modeling and Computational Reduction

Download or read book Reduced Order Methods for Modeling and Computational Reduction written by Alfio Quarteroni and published by Springer. This book was released on 2014-06-05 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph addresses the state of the art of reduced order methods for modeling and computational reduction of complex parametrized systems, governed by ordinary and/or partial differential equations, with a special emphasis on real time computing techniques and applications in computational mechanics, bioengineering and computer graphics. Several topics are covered, including: design, optimization, and control theory in real-time with applications in engineering; data assimilation, geometry registration, and parameter estimation with special attention to real-time computing in biomedical engineering and computational physics; real-time visualization of physics-based simulations in computer science; the treatment of high-dimensional problems in state space, physical space, or parameter space; the interactions between different model reduction and dimensionality reduction approaches; the development of general error estimation frameworks which take into account both model and discretization effects. This book is primarily addressed to computational scientists interested in computational reduction techniques for large scale differential problems.

Book Computational Methods for Approximation of Large Scale Dynamical Systems

Download or read book Computational Methods for Approximation of Large Scale Dynamical Systems written by Mohammad Monir Uddin and published by CRC Press. This book was released on 2019-04-30 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: These days, computer-based simulation is considered the quintessential approach to exploring new ideas in the different disciplines of science, engineering and technology (SET). To perform simulations, a physical system needs to be modeled using mathematics; these models are often represented by linear time-invariant (LTI) continuous-time (CT) systems. Oftentimes these systems are subject to additional algebraic constraints, leading to first- or second-order differential-algebraic equations (DAEs), otherwise known as descriptor systems. Such large-scale systems generally lead to massive memory requirements and enormous computational complexity, thus restricting frequent simulations, which are required by many applications. To resolve these complexities, the higher-dimensional system may be approximated by a substantially lower-dimensional one through model order reduction (MOR) techniques. Computational Methods for Approximation of Large-Scale Dynamical Systems discusses computational techniques for the MOR of large-scale sparse LTI CT systems. Although the book puts emphasis on the MOR of descriptor systems, it begins by showing and comparing the various MOR techniques for standard systems. The book also discusses the low-rank alternating direction implicit (LR-ADI) iteration and the issues related to solving the Lyapunov equation of large-scale sparse LTI systems to compute the low-rank Gramian factors, which are important components for implementing the Gramian-based MOR. Although this book is primarly aimed at post-graduate students and researchers of the various SET disciplines, the basic contents of this book can be supplemental to the advanced bachelor's-level students as well. It can also serve as an invaluable reference to researchers working in academics and industries alike. Features: Provides an up-to-date, step-by-step guide for its readers. Each chapter develops theories and provides necessary algorithms, worked examples, numerical experiments and related exercises. With the combination of this book and its supplementary materials, the reader gains a sound understanding of the topic. The MATLAB® codes for some selected algorithms are provided in the book. The solutions to the exercise problems, experiment data sets and a digital copy of the software are provided on the book's website; The numerical experiments use real-world data sets obtained from industries and research institutes.

Book Mathematics of Complexity and Dynamical Systems

Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.