EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Reactive Ion Enhanced Magnetron Sputtering of Nitride Thin Films

Download or read book Reactive Ion Enhanced Magnetron Sputtering of Nitride Thin Films written by Al-Ahsan Talukder and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetron sputtering is a popular vacuum plasma coating technique used for depositing metals, dielectrics, semiconductors, alloys, and compounds onto a wide range of substrates. In this work, we present two popular types of magnetron sputtering, i.e., pulsed DC and RF magnetron sputtering, for depositing piezoelectric aluminum nitride (AlN) thin films with high Young's modulus. The effects of important process parameters on the plasma I-V characteristics, deposition rate, and the properties of the deposited AlN films, are studied comprehensively. The effects of these process parameters on Young's modulus of the deposited films are also presented. Scanning electron microscope imaging revealed a c-axis oriented columnar growth of AlN. Performance of surface acoustic devices, utilizing the AlN films deposited by magnetron sputtering, are also presented, which confirms the differences in qualities and microstructures of the pulsed DC and RF sputtered films. The RF sputtered AlN films showed a denser microstructure with smaller grains and a smoother surface than the pulsed DC sputtered films. However, the deposition rate of RF sputtering is about half of the pulsed DC sputtering process. We also present a novel ion source enhanced pulsed DC magnetron sputtering for depositing high-quality nitrogen-doped zinc telluride (ZnTe:N) thin films. This ion source enhanced magnetron sputtering provides an increased deposition rate, efficient N-doping, and improved electrical, structural, and optical properties than the traditional magnetron sputtering. Ion source enhanced deposition leads to ZnTe:N films with smaller lattice spacing and wider X-ray diffraction peak, which indicates denser films with smaller crystallites embedded in an amorphous matrix.

Book Pulsed DC Reactive Magnetron Sputtering of Aluminum Nitride Thin Films

Download or read book Pulsed DC Reactive Magnetron Sputtering of Aluminum Nitride Thin Films written by and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Aluminum nitride thin films have been deposited by pulsed DC reactive magnetron sputtering. The pulsed DC power provides arc-free deposition of insulating films. Two types of pulsed DC (unipolar and asymmetric bipolar) were studied with respect to characteristics and properties of resultant films. The unipolar power supply generates a series of 75 kHz DC pulses modulated with 2.5 kHz frequency. The frequency of asymmetric power supply can be varied from 50 kHz to 250 kHz. The duty cycle, which is a ratio of negative pulse time to total time, can be varied from 60% to 98%. Very fast oscillation and overshoot were observed when the polarity of the target voltage was changed. The control of crystal orientation of deposited film is important since the properties of AlN film is related with the orientation. For example, the acoustic velocity is high along the c-axis. The electromechanical coupling coefficient is large in a-axis direction. The crystal orientation and microstructure of the AlN films were strongly affected by the deposition conditions such as sputtering power, growth temperature, sputtering gas pressure and frequency/duty cycle. The crystal orientation of AlN films was closely related with the energy of sputtered atoms and mobility of adatoms on substrate. The c-axis oriented films were obtained when the target power and growth temperature were high. This provided higher energy of sputtered atoms and mobility of adatoms. The deposited AlN films have a columnar structure. The crystal orientation of the AlN films was changed from (101) to (002) by applying an RF bias was applied to the substrate in unipolar pulsed DC sputtering. The columnar structure disappeared when the RF bias was applied to the substrate. Applying bias was thought to increase mobility of adatoms by ion bombardment. MIM (aluminum-AlN-aluminum or molybdenum) structure was fabricated to measure electric properties of AlN films. Dielectric constants of 8.5 to 11.5 were obtained at 100 kHz. Th.

Book Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering

Download or read book Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering written by Tuomas Hänninen and published by Linköping University Electronic Press. This book was released on 2018-02-13 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon nitride and silicon nitride-based ceramics have several favorable material properties, such as high hardness and good wear resistance, which makes them important materials for the coating industry. This thesis focuses the synthesis of silicon nitride, silicon oxynitride, and silicon carbonitride thin films by reactive magnetron sputtering. The films were characterized based on their chemical composition, chemical bonding structure, and mechanical properties to link the growth conditions to the film properties. Silicon nitride films were synthesized by reactive high power impulse magnetron sputtering (HiPIMS) from a Si target in Ar/N2 atmospheres, whereas silicon oxynitride films were grown by using nitrous oxide as the reactive gas. Silicon carbonitride was synthesized by two different methods. The first method was using acetylene (C2H2) in addition to N2 in a Si HiPIMS process and the other was co-sputtering of Si and C, using HiPIMS for Si and direct current magnetron sputtering (DCMS) for graphite targets in an Ar/N2 atmosphere. Langmuir probe measurements were carried out for the silicon nitride and silicon oxynitride processes and positive ion mass spectrometry for the silicon nitride processes to gain further understanding on the plasma conditions during film growth. The target current and voltage waveforms of the reactive HiPIMS processes were evaluated. The main deposition parameter affecting the nitrogen concentration of silicon nitride films was found to be the nitrogen content in the plasma. Films with nitrogen contents of 50 at.% were deposited at N2/Ar flow ratios of 0.3 and above. These films showed Si-N as the dominating component in Si 2p X-ray photoelectron spectroscopy (XPS) core level spectra and Si–Si bonds were absent. The substrate temperature and target power were found to affect the nitrogen content to a lower extent. The residual stress and hardness of the films were found to increase with the film nitrogen content. Another factors influencing the coating stress were the process pressure, negative substrate bias, substrate temperature, and HiPIMS pulse energy. Silicon nitride coatings with good adhesion and low levels of compressive residual stress were grown by using a pressure of 600 mPa, a substrate temperature below 200 °C, pulse energies below 2.5 Ws, and negative bias voltages up to 100 V. The elemental composition of silicon oxynitride films was shown to depend on the target power settings as well as on the nitrous oxide flow rate. Silicon oxide-like films were synthesized under poisoned target surface conditions, whereas films deposited in the transition regime between poisoned and metallic conditions showed higher nitrogen concentrations. The nitrogen content of the films deposited in the transition region was controlled by the applied gas flow rate. The applied target power did not affect the nitrogen concentration in the transition regime, while the oxygen content increased at decreasing target powers. The chemical composition of the films was shown to range from silicon-rich to effectively stoichiometric silicon oxynitrides, where no Si–Si contributions were found in the XPS Si 2p core level spectra. The film optical properties, namely the refractive index and extinction coefficient, were shown to depend on the film chemical bonding, with the stoichiometric films displaying optical properties falling between those of silicon oxide and silicon nitride. The properties of silicon carbonitride films were greatly influenced by the synthesis method. The films deposited by HiPIMS using acetylene as the carbon source showed silicon nitride-like mechanical properties, such as a hardness of ~ 20 GPa and compressive residual stresses of 1.7 – 1.9 GPa, up to film carbon contents of 30 at.%. At larger film carbon contents the films had increasingly amorphous carbon-like properties, such as densities below 2 g/cm3 and hardnesses below 10 GPa. The films with more than 30 at.% carbon also showed columnar morphologies in cross-sectional scanning electron microscopy, whereas films with lower carbon content showed dense morphologies. Due to the use of acetylene the carbonitride films contained hydrogen, up to ~ 15 at.%. The co-sputtered silicon carbonitride films showed a layered SiNx/CNx structure. The hardness of these films increased with the film carbon content, reaching a maximum of 18 GPa at a film carbon content of 12 at.%. Comparatively hard and low stressed films were grown by co-sputtering using a C target power of 1200 W for a C content around 12 at.%, a negative substrate bias less than 100 V, and a substrate temperature up to 340 °C.

Book Multicomponent Nitride Thin Films by Reactive Magnetron Sputtering

Download or read book Multicomponent Nitride Thin Films by Reactive Magnetron Sputtering written by Kristina Johansson and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modified Reactive Sputter Deposition of Titanium Nitride Thin Films Via HiPIMS with Kick pulse and Improvement of the Structure zone Model

Download or read book Modified Reactive Sputter Deposition of Titanium Nitride Thin Films Via HiPIMS with Kick pulse and Improvement of the Structure zone Model written by Andrew J. Miceli and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct current (DC) and radio frequency (RF) sputtering methods have been commonplace in industry for several decades and widely studied in literature. Hard films of nitrides, such as titanium nitride (TiN), have been deposited using reactive DC sputtering onto cutting tools and medical devices extensively as well. For these applications, the films require excellent adhesion, high density, and high hardness. High-Power Impulse Magnetron Sputtering (HIPIMS) has emerged over the last several years as a method to produce films with increased density and mechanical properties. Process-structure-property relationships for reactive HIPIMS are not yet well developed. Additionally, conventional HIPIMS suffers from relatively low deposition rates, which becomes a challenge or barrier of adoption for applied TiN coatings that are typically greater than several microns in thickness. This work aims to look at increasing this deposition rate while maintaining the beneficial effects of HIPIMS by utilizing the short duration "kick-pulse" in the voltage/current cycle, leading to higher instantaneous deposition rates and increased adatom energy level. TiN films are deposited onto silicon (Si) wafers under varied reactive sputtering conditions, including DC, HIPIMS, and HIPIMS with kick-pulse. Structural characterizations are performed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Optical properties of the resulting films are also characterized using reflection UV-Vis spectroscopy. The deposition rate, morphology, and chemical composition of the films are highly affected by the processing conditions, with the kick-pulse producing significant increase in deposition rate and observed grain size. Further investigation will aim to develop a modified structural zone model to include HIPIMS with and without kick-pulse.

Book Handbook of Sputter Deposition Technology

Download or read book Handbook of Sputter Deposition Technology written by Kiyotaka Wasa and published by William Andrew. This book was released on 2012-12-31 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thoroughly updated new edition includes an entirely new team of contributing authors with backgrounds specializing in the various new applications of sputtering technology. It forms a bridge between fundamental theory and practical application, giving an insight into innovative new materials, devices and systems. Organized into three parts for ease of use, this Handbook introduces the fundamentals of thin films and sputtering deposition, explores the theory and practices of this field, and also covers new technology such as nano-functional materials and MEMS. Wide varieties of functional thin film materials and processing are described, and experimental data is provided with detailed examples and theoretical descriptions. A strong applications focus, covering current and emerging technologies, including nano-materials and MEMS (microelectrolmechanical systems) for energy, environments, communications, and/or bio-medical field. New chapters on computer simulation of sputtering and MEMS completes the update and insures that the new edition includes the most current and forward-looking coverage available All applications discussed are supported by theoretical discussions, offering readers both the "how" and the "why" of each technique 40% revision: the new edition includes an entirely new team of contributing authors with backgrounds specializing in the various new applications that are covered in the book and providing the most up-to-date coverage available anywhere

Book Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering

Download or read book Silicon Nitride Based Coatings Grown by Reactive Magnetron Sputtering written by Tuomas Hänninen and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon nitride and silicon nitride-based ceramics have several favorable material properties, such as high hardness and good wear resistance, which makes them important materials for the coating industry. This thesis focuses the synthesis of silicon nitride, silicon oxynitride, and silicon carbonitride thin films by reactive magnetron sputtering. The films were characterized based on their chemical composition, chemical bonding structure, and mechanical properties to link the growth conditions to the film properties. Silicon nitride films were synthesized by reactive high power impulse magnetron sputtering (HiPIMS) from a Si target in Ar/N 2 atmospheres, whereas silicon oxynitride films were grown by using nitrous oxide as the reactive gas. Silicon carbonitride was synthesized by two different methods. The first method was using acetylene (C 2 H 2 ) in addition to N 2 in a Si HiPIMS process and the other was co-sputtering of Si and C, using HiPIMS for Si and direct current magnetron sputtering (DCMS) for graphite targets in an Ar/N 2 atmosphere. Langmuir probe measurements were carried out for the silicon nitride and silicon oxynitride processes and positive ion mass spectrometry for the silicon nitride processes to gain further understanding on the plasma conditions during film growth. The target current and voltage waveforms of the reactive HiPIMS processes were evaluated. The main deposition parameter affecting the nitrogen concentration of silicon nitride films was found to be the nitrogen content in the plasma. Films with nitrogen contents of 50 at.% were deposited at N 2 /Ar flow ratios of 0.3 and above. These films showed Si-N as the dominating component in Si 2p X-ray photoelectron spectroscopy (XPS) core level spectra and Si–Si bonds were absent. The substrate temperature and target power were found to affect the nitrogen content to a lower extent. The residual stress and hardness of the films were found to increase with the film nitrogen content. Another factors influencing the coating stress were the process pressure, negative substrate bias, substrate temperature, and HiPIMS pulse energy. Silicon nitride coatings with good adhesion and low levels of compressive residual stress were grown by using a pressure of 600 mPa, a substrate temperature below 200 °C, pulse energies below 2.5 Ws, and negative bias voltages up to 100 V. The elemental composition of silicon oxynitride films was shown to depend on the target power settings as well as on the nitrous oxide flow rate. Silicon oxide-like films were synthesized under poisoned target surface conditions, whereas films deposited in the transition regime between poisoned and metallic conditions showed higher nitrogen concentrations. The nitrogen content of the films deposited in the transition region was controlled by the applied gas flow rate. The applied target power did not affect the nitrogen concentration in the transition regime, while the oxygen content increased at decreasing target powers. The chemical composition of the films was shown to range from silicon-rich to effectively stoichiometric silicon oxynitrides, where no Si–Si contributions were found in the XPS Si 2p core level spectra. The film optical properties, namely the refractive index and extinction coefficient, were shown to depend on the film chemical bonding, with the stoichiometric films displaying optical properties falling between those of silicon oxide and silicon nitride. The properties of silicon carbonitride films were greatly influenced by the synthesis method. The films deposited by HiPIMS using acetylene as the carbon source showed silicon nitride-like mechanical properties, such as a hardness of ~ 20 GPa and compressive residual stresses of 1.7 – 1.9 GPa, up to film carbon contents of 30 at.%. At larger film carbon contents the films had increasingly amorphous carbon-like properties, such as densities below 2 g/cm 3 and hardnesses below 10 GPa. The films with more than 30 at.% carbon also showed columnar morphologies in cross-sectional scanning electron microscopy, whereas films with lower carbon content showed dense morphologies. Due to the use of acetylene the carbonitride films contained hydrogen, up to ~ 15 at.%. The co-sputtered silicon carbonitride films showed a layered SiN x /CN x structure. The hardness of these films increased with the film carbon content, reaching a maximum of 18 GPa at a film carbon content of 12 at.%. Comparatively hard and low stressed films were grown by co-sputtering using a C target power of 1200 W for a C content around 12 at.%, a negative substrate bias less than 100 V, and a substrate temperature up to 340 °C.

Book Metallic Oxynitride Thin Films by Reactive Sputtering and Related Deposition Methods  Processes  Properties and Applications

Download or read book Metallic Oxynitride Thin Films by Reactive Sputtering and Related Deposition Methods Processes Properties and Applications written by Filipe Vaz and published by Bentham Science Publishers. This book was released on 2013-06-21 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oxynitride thin film technology is rapidly impacting a broad spectrum of applications, ranging from decorative functions (through optoelectronics) to corrosion resistance. Developing a better understanding of the relationships between deposition processes, structure and composition of the deposited films is critical to the continued evolution of these applications. This e-book provides valuable information about the process modeling, fabrication and characterization of metallic oxynitride-based thin films produced by reactive sputtering and some related deposition processes. Its contents are spread in twelve main and concise chapters through which the book thoroughly reviews the bases of oxynitride thin film technology and deposition processes, sputtering processes and the resulting behaviors of these oxynitride thin films. More importantly, the solutions for the growth of oxynitride technology are given in detail with an emphasis on some particular compounds. This is a valuable resource for academic learners studying materials science and industrial coaters, who are concerned not only about fundamental aspects of oxynitride synthesis, but also by their innate material characteristics.

Book Niobium Nitride Based Thin Films Deposited by DC Reactive Magnetron Sputtering

Download or read book Niobium Nitride Based Thin Films Deposited by DC Reactive Magnetron Sputtering written by Moushab Benkahoul and published by . This book was released on 2005 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Ion beam Reactive Sputtering Process for Deposition of Niobium Nitride Thin Films

Download or read book The Ion beam Reactive Sputtering Process for Deposition of Niobium Nitride Thin Films written by Daniel Jenner Lichtenwalner and published by . This book was released on 1990 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhanced Reactive Magnetron Sputtering of Aluminum Nitride

Download or read book Enhanced Reactive Magnetron Sputtering of Aluminum Nitride written by Nathaniel Mark Williams and published by . This book was released on 1998 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Growth  Structure and Properties of Ternary Transition Metal Nitride Thin Films Prepared by Reactive Magnetron Sputtering

Download or read book Growth Structure and Properties of Ternary Transition Metal Nitride Thin Films Prepared by Reactive Magnetron Sputtering written by Torbjörn Joelsson and published by . This book was released on 2003 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Power Impulse Magnetron Sputtering

Download or read book High Power Impulse Magnetron Sputtering written by Daniel Lundin and published by . This book was released on 2019-09-13 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications is an in-depth introduction to HiPIMS that emphasizes how this novel sputtering technique differs from conventional magnetron processes in terms of both discharge physics and the resulting thin film characteristics. Ionization of sputtered atoms is discussed in detail for various target materials. In addition, the role of self-sputtering, secondary electron emission and the importance of controlling the process gas dynamics, both inert and reactive gases, are examined in detail with an aim to generate stable HiPIMS processes. Lastly, the book also looks at how to characterize the HiPIMS discharge, including essential diagnostic equipment. Experimental results and simulations based on industrially relevant material systems are used to illustrate mechanisms controlling nucleation kinetics, column formation and microstructure evolution. Includes a comprehensive description of the HiPIMS process from fundamental physics to applications Provides a distinctive link between the process plasma and thin film communities Discusses the industrialization of HiPIMS and its real world applications

Book Surface Enhanced Vibrational Spectroscopy

Download or read book Surface Enhanced Vibrational Spectroscopy written by Ricardo Aroca and published by John Wiley & Sons. This book was released on 2006-05-01 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS. Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art Offers interpretations of SEVS spectra for practicing analysts Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst

Book Reactive Sputter Deposition

Download or read book Reactive Sputter Deposition written by Diederik Depla and published by Springer Science & Business Media. This book was released on 2008-06-24 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this valuable work, all aspects of the reactive magnetron sputtering process, from the discharge up to the resulting thin film growth, are described in detail, allowing the reader to understand the complete process. Hence, this book gives necessary information for those who want to start with reactive magnetron sputtering, understand and investigate the technique, control their sputtering process and tune their existing process, obtaining the desired thin films.

Book Reactive Magnetron Sputtering as a Deposition Tool for Piezoelectric Thin Films

Download or read book Reactive Magnetron Sputtering as a Deposition Tool for Piezoelectric Thin Films written by Troy Taylor and published by . This book was released on 1998 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Strategies in Thin Film Engineering by Magnetron Sputtering

Download or read book Advanced Strategies in Thin Film Engineering by Magnetron Sputtering written by Alberto Palmero and published by MDPI. This book was released on 2020-12-10 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have witnessed the flourishing of numerous novel strategies based on the magnetron sputtering technique aimed at the advanced engineering of thin films, such as HiPIMS, combined vacuum processes, the implementation of complex precursor gases or the inclusion of particle guns in the reactor, among others. At the forefront of these approaches, investigations focused on nanostructured coatings appear today as one of the priorities in many scientific and technological communities: The science behind them appears in most of the cases as a "terra incognita", fascinating both the fundamentalist, who imagines new concepts, and the experimenter, who is able to create and study new films with as of yet unprecedented performances. These scientific and technological challenges, along with the existence of numerous scientific issues that have yet to be clarified in classical magnetron sputtering depositions (e.g., process control and stability, nanostructuration mechanisms, connection between film morphology and properties or upscaling procedures from the laboratory to industrial scales) have motivated us to edit a specialized volume containing the state-of-the art that put together these innovative fundamental and applied research topics. These include, but are not limited to: • Nanostructure-related properties; • Atomistic processes during film growth; • Process control, process stability, and in situ diagnostics; • Fundamentals and applications of HiPIMS; • Thin film nanostructuration phenomena; • Tribological, anticorrosion, and mechanical properties; • Combined procedures based on the magnetron sputtering technique; • Industrial applications; • Devices.