Download or read book Rank 3 Amalgams written by Bernd Stellmacher and published by American Mathematical Soc.. This book was released on 1998 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for graduate students and research mathematicians working in classical linear algebraic
Download or read book The Mathieu Groups written by A. A. Ivanov and published by Cambridge University Press. This book was released on 2018-06-21 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathieu Groups are presented in the context of finite geometry and the theory of group amalgams.
Download or read book Groups Combinatorics and Geometry written by Martin W. Liebeck and published by Cambridge University Press. This book was released on 1992-09-10 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of papers on the subject of the classification of finite simple groups.
Download or read book Investigations in Algebraic Theory of Combinatorial Objects written by I.A. Faradzev and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed.
Download or read book Geometry of Sporadic Groups Volume 2 Representations and Amalgams written by Aleksandr Anatolievich Ivanov and published by Cambridge University Press. This book was released on 1999 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second in a two-volume set, for researchers into finite groups, geometry and algebraic combinatorics.
Download or read book Symplectic Amalgams written by Christopher Parker and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is the classification of symplectic amalgams - structures which are intimately related to the finite simple groups. In all there sixteen infinite families of symplectic amalgams together with 62 more exotic examples. The classification touches on many important aspects of modern group theory: * p-local analysis * the amalgam method * representation theory over finite fields; and * properties of the finite simple groups. The account is for the most part self-contained and the wealth of detail makes this book an excellent introduction to these recent developments for graduate students, as well as a valuable resource and reference for specialists in the area.
Download or read book Buildings Finite Geometries and Groups written by N.S. Narasimha Sastry and published by Springer Science & Business Media. This book was released on 2011-11-13 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the Proceedings of the ICM 2010 Satellite Conference on “Buildings, Finite Geometries and Groups” organized at the Indian Statistical Institute, Bangalore, during August 29 – 31, 2010. This is a collection of articles by some of the currently very active research workers in several areas related to finite simple groups, Chevalley groups and their generalizations: theory of buildings, finite incidence geometries, modular representations, Lie theory, etc. These articles reflect the current major trends in research in the geometric and combinatorial aspects of the study of these groups. The unique perspective the authors bring in their articles on the current developments and the major problems in their area is expected to be very useful to research mathematicians, graduate students and potential new entrants to these areas.
Download or read book The Classification of Quasithin Groups written by Michael Aschbacher and published by American Mathematical Soc.. This book was released on 2004 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of two volumes, this text offers results that are used in the proof of the main theoremthat lies behind quasithin groups, an class of finite simple groups. Some results are gathered from existing mathematical literature, but many are proven for the first time.
Download or read book Sporadic Groups written by Michael Aschbacher and published by Cambridge University Press. This book was released on 1994-03-25 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sporadic Groups is the first step in a programme to provide a uniform, self-contained treatment of the foundational material on the sporadic finite simple groups. The classification of the finite simple groups is one of the premier achievements of modern mathematics. The classification demonstrates that each finite simple group is either a finite analogue of a simple Lie group or one of 26 pathological sporadic groups. Sporadic Groups provides for the first time a self-contained treatment of the foundations of the theory of sporadic groups accessible to mathematicians with a basic background in finite groups such as in the author's text Finite Group Theory. Introductory material useful for studying the sporadics, such as a discussion of large extraspecial 2-subgroups and Tits' coset geometries, opens the book. A construction of the Mathieu groups as the automorphism groups of Steiner systems follows. The Golay and Todd modules, and the 2-local geometry for M24 are discussed. This is followed by the standard construction of Conway of the Leech lattice and the Conway group. The Monster is constructed as the automorphism group of the Griess algebra using some of the best features of the approaches of Griess, Conway, and Tits, plus a few new wrinkles. Researchers in finite group theory will find this text invaluable. The subjects treated will interest combinatorists, number theorists, and conformal field theorists.
Download or read book Rank 2 Amalgams and Fusion Systems written by Martin van Beek and published by Springer Nature. This book was released on with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Homogeneous Integral Table Algebras of Degree Three A Trilogy written by Harvey I. Blau and published by American Mathematical Soc.. This book was released on 2000 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Homogeneous integral table algebras of degree three with a faithful real element. The algebras of the title are classified to exact isomorphism; that is, the sets of structure constants which arise from the given basis are completely determined. Other results describe all possible extensions (pre-images), with a faithful element which is not necessarily real, of certain simple homogeneous integral table algebras of degree three. On antisymmetric homogeneous integral table algebras of degree three. This paper determines the homogeneous integral table algebras of degree three in which the given basis has a faithful element and has no nontrivial elements that are either real (symmetric) or linear, and where an additional hypothesis is satisfied. It is shown that all such bases must occur as the set of orbit sums in the complex group algebra of a finite abelian group under the action of a fixed-point-free automorphism oforder three. Homogeneous integral table algebras of degree three with no nontrivial linear elements. The algebras of the title which also have a faithful element are determined to exact isomorphism. All of the simple homogeneous integral table algebras of degree three are displayed, and the commutative association schemes in which all the nondiagonal relations have valency three and where some relation defines a connected graph on the underlying set are classified up to algebraic isomorphism.
Download or read book Invariants under Tori of Rings of Differential Operators and Related Topics written by Ian Malcolm Musson and published by American Mathematical Soc.. This book was released on 1998 with total page 99 pages. Available in PDF, EPUB and Kindle. Book excerpt: If $G$ is a reductive algebraic group acting rationally on a smooth affine variety $X$, then it is generally believed that $D(X) $ has properties very similar to those of enveloping algebras of semisimple Lie algebras. In this book, the authors show that this is indeed the case when $G$ is a torus and $X=k \times (k ) $. They give a precise description of the primitive ideals in $D(X) $ and study in detail the ring theoretical and homological properties of the minimal primitive quotients of $D(X) $. The latter are of the form $B =D(X) /({\germ g}-\chi({\germ g}))$ where ${\germ g}= {\rm Lie}(G)$, $\chi\in {\germ g} ast$ and ${\germ g}-\chi({\germ g})$ is the set of all $v-\chi(v)$ with $v\in {\germ g}$. They occur as rings of twisted differential operators on toric varieties. It is also proven that if $G$ is a torus acting rationally on a smooth affine variety, then $D(X/\!/G)$ is a simple ring.
Download or read book Rational Homotopical Models and Uniqueness written by Martin Majewski and published by American Mathematical Soc.. This book was released on 2000 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this paper is to prove the following conjecture of Baues and Lemaire: the differential graded Lie Tlgebra associated with the Sullivan model of a space is homotopy equivalent to its Quillen model. In addition we show the same for the cellular Lie algebra model which we build from the simplicial analog of the classical Adams-Hilton model. It turns out that this cellular Lie algebra model is one link in a chain of models connecting the models of Quillen and Sullivan.The key result which makes all this possible is Anick's correspondence between differential graded Lie algebras and Hopf algebras up to homotopy. In addition we show that the Quillen model is a rational homotopical equivalence, and we conclude the same for the other models using our main result. Theconstruction of the three models is given in detail. The background from homotopy theory, differential algebra, and algebra is presented in great generality.
Download or read book Hopf Algebras Polynomial Formal Groups and Raynaud Orders written by Lindsay Childs and published by American Mathematical Soc.. This book was released on 1998 with total page 133 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gives two new methods for constructing $p$-elementary Hopf algebra orders over the valuation ring $R$ of a local field $K$ containing the $p$-adic rational numbers. One method constructs Hopf orders using isogenies of commutative degree 2 polynomial formal groups of dimension $n$, and is built on a systematic study of such formal group laws. The other method uses an exponential generalization of a 1992 construction of Greither. Both constructions yield Raynaud orders as iterated extensions of rank $p$ Hopf algebras; the exponential method obtains all Raynaud orders whose invariants satisfy a certain $p$-adic condition.
Download or read book Categories of Operator Modules Morita Equivalence and Projective Modules written by David P. Blecher and published by American Mathematical Soc.. This book was released on 2000 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: We employ recent advances in the theory of operator spaces, also known as quantized functional analysis, to provide a context in which one can compare categories of modules over operator algebras that are not necessarily self-adjoint. We focus our attention on the category of Hilbert modules over an operator algebra and on the category of operator modules over an operator algebra. The module operations are assumed to be completely bounded - usually, completely contractive. Wedevelop the notion of a Morita context between two operator algebras A and B. This is a system (A,B,{} {A}X {B},{} {B} Y {A},(\cdot,\cdot),[\cdot,\cdot]) consisting of the algebras, two bimodules {A}X {B and {B}Y {A} and pairings (\cdot,\cdot) and [\cdot,\cdot] that induce (complete) isomorphisms betweenthe (balanced) Haagerup tensor products, X \otimes {hB} {} Y and Y \otimes {hA} {} X, and the algebras, A and B, respectively. Thus, formally, a Morita context is the same as that which appears in pure ring theory. The subtleties of the theory lie in the interplay between the pure algebra and the operator space geometry. Our analysis leads to viable notions of projective operator modules and dual operator modules. We show that two C*-algebras are Morita equivalent in our sense if and only ifthey are C*-algebraically strong Morita equivalent, and moreover the equivalence bimodules are the same. The distinctive features of the non-self-adjoint theory are illuminated through a number of examples drawn from complex analysis and the theory of incidence algebras over topological partial orders.Finally, an appendix provides links to the literature that developed since this Memoir was accepted for publication.
Download or read book Differential Equations Methods for the Monge Kantorovich Mass Transfer Problem written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 1999 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, the authors demonstrate under some assumptions on $f $, $f $ that a solution to the classical Monge-Kantorovich problem of optimally rearranging the measure $\mu{ }=f dx$ onto $\mu =f dy$ can be constructed by studying the $p$-Laplacian equation $- \roman{div}(\vert DU_p\vert p-2}Du_p)=f -f $ in the limit as $p\rightarrow\infty$. The idea is to show $u_p\rightarrow u$, where $u$ satisfies $\vert Du\vert\leq 1, -\roman{div}(aDu)=f -f $ for some density $a\geq0$, and then to build a flow by solving a nonautonomous ODE involving $a, Du, f $ and $f $
Download or read book Annihilating Fields of Standard Modules of mathfrak sl 2 mathbb C sim and Combinatorial Identities written by Arne Meurman and published by American Mathematical Soc.. This book was released on 1999 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, the authors show that a set of local admissible fields generates a vertex algebra. For an affine Lie algebra $\tilde{\frak g}$, they construct the corresponding level $k$ vertex operator algebra and show that level $k$ highest weight $\tilde{\frak g}$-modules are modules for this vertex operator algebra. They determine the set of annihilating fields of level $k$ standard modules and study the corresponding loop $\tilde{\frak g}$-module--the set of relations that defines standard modules. In the case when $\tilde{\frak g}$ is of type $A{(1)} 1$, they construct bases of standard modules parameterized by colored partitions, and as a consequence, obtain a series of Rogers-Ramanujan type combinatorial identities.