EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Randomness and Recurrence in Dynamical Systems  A Real Analysis Approach

Download or read book Randomness and Recurrence in Dynamical Systems A Real Analysis Approach written by Rodney Nillsen and published by American Mathematical Soc.. This book was released on 2010-12-31 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomness and Recurrence in Dynamical Systems aims to bridge a gap between undergraduate teaching and the research level in mathematical analysis. It makes ideas on averaging, randomness, and recurrence, which traditionally require measure theory, accessible at the undergraduate and lower graduate level. The author develops new techniques of proof and adapts known proofs to make the material accessible to students with only a background in elementary real analysis. Over 60 figures are used to explain proofs, provide alternative viewpoints and elaborate on the main text. The book explains further developments in terms of measure theory. The results are presented in the context of dynamical systems, and the quantitative results are related to the underlying qualitative phenomena—chaos, randomness, recurrence and order. The final part of the book introduces and motivates measure theory and the notion of a measurable set, and describes the relationship of Birkhoff's Individual Ergodic Theorem to the preceding ideas. Developments in other dynamical systems are indicated, in particular Lévy's result on the frequency of occurence of a given digit in the partial fractions expansion of a number.

Book Extremes and Recurrence in Dynamical Systems

Download or read book Extremes and Recurrence in Dynamical Systems written by Valerio Lucarini and published by John Wiley & Sons. This book was released on 2016-04-25 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.

Book Random Dynamical Systems

Download or read book Random Dynamical Systems written by Rabi Bhattacharya and published by Cambridge University Press. This book was released on 2007-01-08 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatment provides an exposition of discrete time dynamic processes evolving over an infinite horizon. Chapter 1 reviews some mathematical results from the theory of deterministic dynamical systems, with particular emphasis on applications to economics. The theory of irreducible Markov processes, especially Markov chains, is surveyed in Chapter 2. Equilibrium and long run stability of a dynamical system in which the law of motion is subject to random perturbations is the central theme of Chapters 3-5. A unified account of relatively recent results, exploiting splitting and contractions, that have found applications in many contexts is presented in detail. Chapter 6 explains how a random dynamical system may emerge from a class of dynamic programming problems. With examples and exercises, readers are guided from basic theory to the frontier of applied mathematical research.

Book Dynamical Systems and Linear Algebra

Download or read book Dynamical Systems and Linear Algebra written by Fritz Colonius and published by American Mathematical Society. This book was released on 2014-10-03 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the autonomous case for one matrix A via induced dynamical systems in ℝd and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems. The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students.

Book Dynamical Systems and Ergodic Theory

Download or read book Dynamical Systems and Ergodic Theory written by Mark Pollicott and published by Cambridge University Press. This book was released on 1998-01-29 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).

Book Random Graph Dynamics

    Book Details:
  • Author : Rick Durrett
  • Publisher : Cambridge University Press
  • Release : 2010-05-31
  • ISBN : 1139460889
  • Pages : 203 pages

Download or read book Random Graph Dynamics written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-05-31 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of random graphs began in the late 1950s in several papers by Erdos and Renyi. In the late twentieth century, the notion of six degrees of separation, meaning that any two people on the planet can be connected by a short chain of people who know each other, inspired Strogatz and Watts to define the small world random graph in which each site is connected to k close neighbors, but also has long-range connections. At a similar time, it was observed in human social and sexual networks and on the Internet that the number of neighbors of an individual or computer has a power law distribution. This inspired Barabasi and Albert to define the preferential attachment model, which has these properties. These two papers have led to an explosion of research. The purpose of this book is to use a wide variety of mathematical argument to obtain insights into the properties of these graphs. A unique feature is the interest in the dynamics of process taking place on the graph in addition to their geometric properties, such as connectedness and diameter.

Book Randomness and Recurrence in Dynamical Systems

Download or read book Randomness and Recurrence in Dynamical Systems written by Rodney Nillsen and published by MAA Press. This book was released on 2010 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomness and Recurrence in Dynamical Systems makes accessible, at the undergraduate or beginning graduate level, results and ideas on averaging, randomness and recurrence that traditionally require measure theory. Assuming only a background in elementary calculus and real analysis, new techniques of proof have been developed, and known proofs have been adapted, to make this possible. The book connects the material with recent research, thereby bridging the gap between undergraduate teaching and current mathematical research. The various topics are unified by the concept of an abstract dynamical system, so there are close connections with what may be termed 'Probabilistic Chaos Theory' or 'Randomness'. The work is appropriate for undergraduate courses in real analysis, dynamical systems, random and chaotic phenomena and probability. It will also be suitable for readers who are interested in mathematical ideas of randomness and recurrence, but who have no measure theory background--

Book Dynamical Systems and Random Processes

Download or read book Dynamical Systems and Random Processes written by Jane Hawkins and published by American Mathematical Soc.. This book was released on 2019-09-23 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 16th Carolina Dynamics Symposium, held from April 13–15, 2018, at Agnes Scott College, Decatur, Georgia. The papers cover various topics in dynamics and randomness, including complex dynamics, ergodic theory, topological dynamics, celestial mechanics, symbolic dynamics, computational topology, random processes, and regular languages. The intent is to provide a glimpse of the richness of the field and of the common threads that tie the different specialties together.

Book Random Perturbations of Dynamical Systems

Download or read book Random Perturbations of Dynamical Systems written by Mark I. Freidlin and published by Springer Science & Business Media. This book was released on 2012-05-31 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many notions and results presented in the previous editions of this volume have since become quite popular in applications, and many of them have been “rediscovered” in applied papers. In the present 3rd edition small changes were made to the chapters in which long-time behavior of the perturbed system is determined by large deviations. Most of these changes concern terminology. In particular, it is explained that the notion of sub-limiting distribution for a given initial point and a time scale is identical to the idea of metastability, that the stochastic resonance is a manifestation of metastability, and that the theory of this effect is a part of the large deviation theory. The reader will also find new comments on the notion of quasi-potential that the authors introduced more than forty years ago, and new references to recent papers in which the proofs of some conjectures included in previous editions have been obtained. Apart from the above mentioned changes the main innovations in the 3rd edition concern the averaging principle. A new Section on deterministic perturbations of one-degree-of-freedom systems was added in Chapter 8. It is shown there that pure deterministic perturbations of an oscillator may lead to a stochastic, in a certain sense, long-time behavior of the system, if the corresponding Hamiltonian has saddle points. The usefulness of a joint consideration of classical theory of deterministic perturbations together with stochastic perturbations is illustrated in this section. Also a new Chapter 9 has been inserted in which deterministic and stochastic perturbations of systems with many degrees of freedom are considered. Because of the resonances, stochastic regularization in this case is even more important.

Book Random Perturbations of Dynamical Systems

Download or read book Random Perturbations of Dynamical Systems written by M. I. Freidlin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Asymptotical problems have always played an important role in probability theory. In classical probability theory dealing mainly with sequences of independent variables, theorems of the type of laws of large numbers, theorems of the type of the central limit theorem, and theorems on large deviations constitute a major part of all investigations. In recent years, when random processes have become the main subject of study, asymptotic investigations have continued to playa major role. We can say that in the theory of random processes such investigations play an even greater role than in classical probability theory, because it is apparently impossible to obtain simple exact formulas in problems connected with large classes of random processes. Asymptotical investigations in the theory of random processes include results of the types of both the laws of large numbers and the central limit theorem and, in the past decade, theorems on large deviations. Of course, all these problems have acquired new aspects and new interpretations in the theory of random processes.

Book Controllability  Stabilization  and the Regulator Problem for Random Differential Systems

Download or read book Controllability Stabilization and the Regulator Problem for Random Differential Systems written by Russell Johnson and published by American Mathematical Soc.. This book was released on 1998 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops a systematic study of time-dependent control processes. The basic problem of null controllability of linear systems is first considered. Using methods of ergodic theory and topological dynamics, general local null controllability criteria are given. Then the subtle question of global null controllability is studied. Next, the random linear feedback and stabilization problem is posed and solved. Using concepts of exponential dichotomy and rotation number for linear Hamiltonian systems, a solution of the Riccati equation is obtained which has extremely good robustness properties and which also preserves all the smoothness and recurrence properties of the coefficients. Finally, a general version of the local nonlinear feedback stabilization problem is solved.

Book Topological Dynamics of Random Dynamical Systems

Download or read book Topological Dynamics of Random Dynamical Systems written by Nguyen Dinh Cong and published by Oxford University Press. This book was released on 1997 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic treatment of the theory of topological dynamics of random dynamical systems. A relatively new field, the theory of random dynamical systems unites and develops the classical deterministic theory of dynamical systems and probability theory, finding numerous applications in disciplines ranging from physics and biology to engineering, finance and economics. This book presents in detail the solutions to the most fundamental problems of topological dynamics: linearization of nonlinear smooth systems, classification, and structural stability of linear hyperbolic systems. Employing the tools and methods of algebraic ergodic theory, the theory presented in the book has surprisingly beautiful results showing the richness of random dynamical systems as well as giving a gentle generalization of the classical deterministic theory.

Book Recurrence Sequences

    Book Details:
  • Author : Graham Everest
  • Publisher : American Mathematical Soc.
  • Release : 2015-09-03
  • ISBN : 1470423154
  • Pages : 338 pages

Download or read book Recurrence Sequences written by Graham Everest and published by American Mathematical Soc.. This book was released on 2015-09-03 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recurrence sequences are of great intrinsic interest and have been a central part of number theory for many years. Moreover, these sequences appear almost everywhere in mathematics and computer science. This book surveys the modern theory of linear recurrence sequences and their generalizations. Particular emphasis is placed on the dramatic impact that sophisticated methods from Diophantine analysis and transcendence theory have had on the subject. Related work on bilinear recurrences and an emerging connection between recurrences and graph theory are covered. Applications and links to other areas of mathematics are described, including combinatorics, dynamical systems and cryptography, and computer science. The book is suitable for researchers interested in number theory, combinatorics, and graph theory.

Book Recurrence Plots and Their Quantifications  Expanding Horizons

Download or read book Recurrence Plots and Their Quantifications Expanding Horizons written by Charles L. Webber, Jr. and published by Springer. This book was released on 2016-05-18 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chapters in this book originate from the research work and contributions presented at the Sixth International Symposium on Recurrence Plots held in Grenoble, France in June 2015. Scientists from numerous disciplines gathered to exchange knowledge on recent applications and developments in recurrence plots and recurrence quantification analysis. This meeting was remarkable because of the obvious expansion of recurrence strategies (theory) and applications (practice) into ever-broadening fields of science. It discusses real-world systems from various fields, including mathematics, strange attractors, applied physics, physiology, medicine, environmental and earth sciences, as well as psychology and linguistics. Even readers not actively researching any of these particular systems will benefit from discovering how other scientists are finding practical non-linear solutions to specific problems.The book is of interest to an interdisciplinary audience of recurrence plot users and researchers interested in time series analysis in particular, and in complex systems in general.

Book Perspectives in Dynamical Systems II     Numerical and Analytical Approaches

Download or read book Perspectives in Dynamical Systems II Numerical and Analytical Approaches written by Jan Awrejcewicz and published by Springer Nature. This book was released on with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Encyclopedia of Nonlinear Science

Download or read book Encyclopedia of Nonlinear Science written by Alwyn Scott and published by Routledge. This book was released on 2006-05-17 with total page 1107 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 438 alphabetically-arranged essays, this work provides a useful overview of the core mathematical background for nonlinear science, as well as its applications to key problems in ecology and biological systems, chemical reaction-diffusion problems, geophysics, economics, electrical and mechanical oscillations in engineering systems, lasers and nonlinear optics, fluid mechanics and turbulence, and condensed matter physics, among others.

Book Probability  Random Processes  and Ergodic Properties

Download or read book Probability Random Processes and Ergodic Properties written by Robert M. Gray and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been written for several reasons, not all of which are academic. This material was for many years the first half of a book in progress on information and ergodic theory. The intent was and is to provide a reasonably self-contained advanced treatment of measure theory, prob ability theory, and the theory of discrete time random processes with an emphasis on general alphabets and on ergodic and stationary properties of random processes that might be neither ergodic nor stationary. The intended audience was mathematically inc1ined engineering graduate students and visiting scholars who had not had formal courses in measure theoretic probability . Much of the material is familiar stuff for mathematicians, but many of the topics and results have not previously appeared in books. The original project grew too large and the first part contained much that would likely bore mathematicians and dis courage them from the second part. Hence I finally followed the suggestion to separate the material and split the project in two. The original justification for the present manuscript was the pragmatic one that it would be a shame to waste all the effort thus far expended. A more idealistic motivation was that the presentation bad merit as filling a unique, albeit smaIl, hole in the literature.