EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Random Walks with Time Stationary Random Distribution Function

Download or read book Random Walks with Time Stationary Random Distribution Function written by Dug Hun Hong and published by . This book was released on 1990 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Random Walks and Electric Networks

Download or read book Random Walks and Electric Networks written by Peter G. Doyle and published by American Mathematical Soc.. This book was released on 1984-12-31 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.

Book Analysis of Financial Time Series

Download or read book Analysis of Financial Time Series written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2010-10-26 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.

Book Elements of Random Walk and Diffusion Processes

Download or read book Elements of Random Walk and Diffusion Processes written by Oliver C. Ibe and published by John Wiley & Sons. This book was released on 2013-09-23 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an important and unique introduction to random walk theory Random walk is a stochastic process that has proven to be a useful model in understanding discrete-state discrete-time processes across a wide spectrum of scientific disciplines. Elements of Random Walk and Diffusion Processes provides an interdisciplinary approach by including numerous practical examples and exercises with real-world applications in operations research, economics, engineering, and physics. Featuring an introduction to powerful and general techniques that are used in the application of physical and dynamic processes, the book presents the connections between diffusion equations and random motion. Standard methods and applications of Brownian motion are addressed in addition to Levy motion, which has become popular in random searches in a variety of fields. The book also covers fractional calculus and introduces percolation theory and its relationship to diffusion processes. With a strong emphasis on the relationship between random walk theory and diffusion processes, Elements of Random Walk and Diffusion Processes features: Basic concepts in probability, an overview of stochastic and fractional processes, and elements of graph theory Numerous practical applications of random walk across various disciplines, including how to model stock prices and gambling, describe the statistical properties of genetic drift, and simplify the random movement of molecules in liquids and gases Examples of the real-world applicability of random walk such as node movement and node failure in wireless networking, the size of the Web in computer science, and polymers in physics Plentiful examples and exercises throughout that illustrate the solution of many practical problems Elements of Random Walk and Diffusion Processes is an ideal reference for researchers and professionals involved in operations research, economics, engineering, mathematics, and physics. The book is also an excellent textbook for upper-undergraduate and graduate level courses in probability and stochastic processes, stochastic models, random motion and Brownian theory, random walk theory, and diffusion process techniques.

Book Random Walks and Diffusion

Download or read book Random Walks and Diffusion written by Open University Course Team and published by . This book was released on 2009-10-21 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This block explores the diffusion equation which is most commonly encountered in discussions of the flow of heat and of molecules moving in liquids, but diffusion equations arise from many different areas of applied mathematics. As well as considering the solutions of diffusion equations in detail, we also discuss the microscopic mechanism underlying the diffusion equation, namely that particles of matter or heat move erratically. This involves a discussion of elementary probability and statistics, which are used to develop a description of random walk processes and of the central limit theorem. These concepts are used to show that if particles follow random walk trajectories, their density obeys the diffusion equation.

Book Random Walk and the Heat Equation

Download or read book Random Walk and the Heat Equation written by Gregory F. Lawler and published by American Mathematical Soc.. This book was released on 2010-11-22 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.

Book Random Processes for Engineers

Download or read book Random Processes for Engineers written by Bruce Hajek and published by Cambridge University Press. This book was released on 2015-03-12 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include: • Calculus of random processes in linear systems • Kalman and Wiener filtering • Hidden Markov models for statistical inference • The estimation maximization (EM) algorithm • An introduction to martingales and concentration inequalities. Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).

Book Asymptotic Analysis of Random Walks

Download or read book Asymptotic Analysis of Random Walks written by A. A. Borovkov and published by Cambridge University Press. This book was released on 2020-10-29 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.

Book Basics of Applied Stochastic Processes

Download or read book Basics of Applied Stochastic Processes written by Richard Serfozo and published by Springer Science & Business Media. This book was released on 2009-01-24 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are mathematical models of random phenomena that evolve according to prescribed dynamics. Processes commonly used in applications are Markov chains in discrete and continuous time, renewal and regenerative processes, Poisson processes, and Brownian motion. This volume gives an in-depth description of the structure and basic properties of these stochastic processes. A main focus is on equilibrium distributions, strong laws of large numbers, and ordinary and functional central limit theorems for cost and performance parameters. Although these results differ for various processes, they have a common trait of being limit theorems for processes with regenerative increments. Extensive examples and exercises show how to formulate stochastic models of systems as functions of a system’s data and dynamics, and how to represent and analyze cost and performance measures. Topics include stochastic networks, spatial and space-time Poisson processes, queueing, reversible processes, simulation, Brownian approximations, and varied Markovian models. The technical level of the volume is between that of introductory texts that focus on highlights of applied stochastic processes, and advanced texts that focus on theoretical aspects of processes.

Book Limit Theorems for Functionals of Random Walks

Download or read book Limit Theorems for Functionals of Random Walks written by A. N. Borodin and published by American Mathematical Soc.. This book was released on 1995 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines traditional problems in the theory of random walks: limit theorems for additive and multiadditive functionals defined on a random walk. Although the problems are traditional, the methods presented here are new. The book is intended for experts in probability theory and its applications, as well as for undergraduate and graduate students specializing in these areas.

Book Non homogeneous Random Walks

Download or read book Non homogeneous Random Walks written by Mikhail Menshikov and published by Cambridge University Press. This book was released on 2016-12-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.

Book Markov Chains and Mixing Times

Download or read book Markov Chains and Mixing Times written by David A. Levin and published by American Mathematical Soc.. This book was released on 2017-10-31 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the modern theory of Markov chains, whose goal is to determine the rate of convergence to the stationary distribution, as a function of state space size and geometry. This topic has important connections to combinatorics, statistical physics, and theoretical computer science. Many of the techniques presented originate in these disciplines. The central tools for estimating convergence times, including coupling, strong stationary times, and spectral methods, are developed. The authors discuss many examples, including card shuffling and the Ising model, from statistical mechanics, and present the connection of random walks to electrical networks and apply it to estimate hitting and cover times. The first edition has been used in courses in mathematics and computer science departments of numerous universities. The second edition features three new chapters (on monotone chains, the exclusion process, and stationary times) and also includes smaller additions and corrections throughout. Updated notes at the end of each chapter inform the reader of recent research developments.

Book Probability  Random Processes  and Statistical Analysis

Download or read book Probability Random Processes and Statistical Analysis written by Hisashi Kobayashi and published by Cambridge University Press. This book was released on 2011-12-15 with total page 813 pages. Available in PDF, EPUB and Kindle. Book excerpt: Together with the fundamentals of probability, random processes and statistical analysis, this insightful book also presents a broad range of advanced topics and applications. There is extensive coverage of Bayesian vs. frequentist statistics, time series and spectral representation, inequalities, bound and approximation, maximum-likelihood estimation and the expectation-maximization (EM) algorithm, geometric Brownian motion and Itô process. Applications such as hidden Markov models (HMM), the Viterbi, BCJR, and Baum–Welch algorithms, algorithms for machine learning, Wiener and Kalman filters, and queueing and loss networks are treated in detail. The book will be useful to students and researchers in such areas as communications, signal processing, networks, machine learning, bioinformatics, econometrics and mathematical finance. With a solutions manual, lecture slides, supplementary materials and MATLAB programs all available online, it is ideal for classroom teaching as well as a valuable reference for professionals.

Book Fractional Dynamics on Networks and Lattices

Download or read book Fractional Dynamics on Networks and Lattices written by Thomas Michelitsch and published by John Wiley & Sons. This book was released on 2019-04-30 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book analyzes stochastic processes on networks and regular structures such as lattices by employing the Markovian random walk approach. Part 1 is devoted to the study of local and non-local random walks. It shows how non-local random walk strategies can be defined by functions of the Laplacian matrix that maintain the stochasticity of the transition probabilities. A major result is that only two types of functions are admissible: type (i) functions generate asymptotically local walks with the emergence of Brownian motion, whereas type (ii) functions generate asymptotically scale-free non-local “fractional” walks with the emergence of Lévy flights. In Part 2, fractional dynamics and Lévy flight behavior are analyzed thoroughly, and a generalization of Pólya's classical recurrence theorem is developed for fractional walks. The authors analyze primary fractional walk characteristics such as the mean occupation time, the mean first passage time, the fractal scaling of the set of distinct nodes visited, etc. The results show the improved search capacities of fractional dynamics on networks.

Book Introduction to Probability and Statistics from a Bayesian Viewpoint  Part 1  Probability

Download or read book Introduction to Probability and Statistics from a Bayesian Viewpoint Part 1 Probability written by D. V. Lindley and published by Cambridge University Press. This book was released on 1965-01-02 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two parts of this book treat probability and statistics as mathematical disciplines and with the same degree of rigour as is adopted for other branches of applied mathematics at the level of a British honours degree. They contain the minimum information about these subjects that any honours graduate in mathematics ought to know. They are written primarily for general mathematicians, rather than for statistical specialists or for natural scientists who need to use statistics in their work. No previous knowledge of probability or statistics is assumed, though familiarity with calculus and linear algebra is required. The first volume takes the theory of probability sufficiently far to be able to discuss the simpler random processes, for example, queueing theory and random walks. The second volume deals with statistics, the theory of making valid inferences from experimental data, and includes an account of the methods of least squares and maximum likelihood; it uses the results of the first volume.

Book Random Walks on Infinite Graphs and Groups

Download or read book Random Walks on Infinite Graphs and Groups written by Wolfgang Woess and published by Cambridge University Press. This book was released on 2000-02-13 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.

Book An Introduction to Anomalous Diffusion and Relaxation

Download or read book An Introduction to Anomalous Diffusion and Relaxation written by Luiz Roberto Evangelista and published by Springer Nature. This book was released on 2023-01-01 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a contemporary treatment of the problems related to anomalous diffusion and anomalous relaxation. It collects and promotes unprecedented applications dealing with diffusion problems and surface effects, adsorption-desorption phenomena, memory effects, reaction-diffusion equations, and relaxation in constrained structures of classical and quantum processes. The topics covered by the book are of current interest and comprehensive range, including concepts in diffusion and stochastic physics, random walks, and elements of fractional calculus. They are accompanied by a detailed exposition of the mathematical techniques intended to serve the reader as a tool to handle modern boundary value problems. This self-contained text can be used as a reference source for graduates and researchers working in applied mathematics, physics of complex systems and fluids, condensed matter physics, statistical physics, chemistry, chemical and electrical engineering, biology, and many others.