Download or read book Stopped Random Walks written by Allan Gut and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: My first encounter with renewal theory and its extensions was in 1967/68 when I took a course in probability theory and stochastic processes, where the then recent book Stochastic Processes by Professor N.D. Prabhu was one of the requirements. Later, my teacher, Professor Carl-Gustav Esseen, gave me some problems in this area for a possible thesis, the result of which was Gut (1974a). Over the years I have, on and off, continued research in this field. During this time it has become clear that many limit theorems can be obtained with the aid of limit theorems for random walks indexed by families of positive, integer valued random variables, typically by families of stopping times. During the spring semester of 1984 Professor Prabhu visited Uppsala and very soon got me started on a book focusing on this aspect. I wish to thank him for getting me into this project, for his advice and suggestions, as well as his kindness and hospitality during my stay at Cornell in the spring of 1985. Throughout the writing of this book I have had immense help and support from Svante Janson. He has not only read, but scrutinized, every word and every formula of this and earlier versions of the manuscript. My gratitude to him for all the errors he found, for his perspicacious suggestions and remarks and, above all, for what his unusual personal as well as scientific generosity has meant to me cannot be expressed in words.
Download or read book Principles of Random Walk written by Frank Spitzer and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted exclusively to a very special class of random processes, namely, to random walk on the lattice points of ordinary Euclidian space. The author considers this high degree of specialization worthwhile because the theory of such random walks is far more complete than that of any larger class of Markov chains. Almost 100 pages of examples and problems are included.
Download or read book Renewal Theory for Perturbed Random Walks and Similar Processes written by Alexander Iksanov and published by Birkhäuser. This book was released on 2016-12-09 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a detailed review of perturbed random walks, perpetuities, and random processes with immigration. Being of major importance in modern probability theory, both theoretical and applied, these objects have been used to model various phenomena in the natural sciences as well as in insurance and finance. The book also presents the many significant results and efficient techniques and methods that have been worked out in the last decade. The first chapter is devoted to perturbed random walks and discusses their asymptotic behavior and various functionals pertaining to them, including supremum and first-passage time. The second chapter examines perpetuities, presenting results on continuity of their distributions and the existence of moments, as well as weak convergence of divergent perpetuities. Focusing on random processes with immigration, the third chapter investigates the existence of moments, describes long-time behavior and discusses limit theorems, both with and without scaling. Chapters four and five address branching random walks and the Bernoulli sieve, respectively, and their connection to the results of the previous chapters. With many motivating examples, this book appeals to both theoretical and applied probabilists.
Download or read book Nonlinear Renewal Theory in Sequential Analysis written by Michael Woodroofe and published by SIAM. This book was released on 1982-01-01 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: The global approach to nonlinear renewal theory is integrated with the author's own local approach. Both the theory and its applications are placed in perspective by including a discussion of the linear renewal theorem and its applications to the sequential probability ratio test. Applications to repeated significance tests, to tests with power one, and to sequential estimation are also included. The monograph is self-contained for readers with a working knowledge of measure-theoretic probability and intermediate statistical theory.
Download or read book Random Walk Brownian Motion and Martingales written by Rabi Bhattacharya and published by Springer Nature. This book was released on 2021-09-20 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an approachable introduction to stochastic processes that explores the four pillars of random walk, branching processes, Brownian motion, and martingales. Building from simple examples, the authors focus on developing context and intuition before formalizing the theory of each topic. This inviting approach illuminates the key ideas and computations in the proofs, forming an ideal basis for further study. Consisting of many short chapters, the book begins with a comprehensive account of the simple random walk in one dimension. From here, different paths may be chosen according to interest. Themes span Poisson processes, branching processes, the Kolmogorov–Chentsov theorem, martingales, renewal theory, and Brownian motion. Special topics follow, showcasing a selection of important contemporary applications, including mathematical finance, optimal stopping, ruin theory, branching random walk, and equations of fluids. Engaging exercises accompany the theory throughout. Random Walk, Brownian Motion, and Martingales is an ideal introduction to the rigorous study of stochastic processes. Students and instructors alike will appreciate the accessible, example-driven approach. A single, graduate-level course in probability is assumed.
Download or read book Collective risk theory written by Harald Cramér and published by . This book was released on 1955 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Adventures in Stochastic Processes written by Sidney I. Resnick and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.
Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Download or read book Asymptotic Analysis of Random Walks written by A. A. Borovkov and published by Cambridge University Press. This book was released on 2020-10-29 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.
Download or read book Non homogeneous Random Walks written by Mikhail Menshikov and published by Cambridge University Press. This book was released on 2016-12-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.
Download or read book Compound Renewal Processes written by A. A. Borovkov and published by Cambridge University Press. This book was released on 2022-06-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Compound renewal processes (CRPs) are among the most ubiquitous models arising in applications of probability. At the same time, they are a natural generalization of random walks, the most well-studied classical objects in probability theory. This monograph, written for researchers and graduate students, presents the general asymptotic theory and generalizes many well-known results concerning random walks. The book contains the key limit theorems for CRPs, functional limit theorems, integro-local limit theorems, large and moderately large deviation principles for CRPs in the state space and in the space of trajectories, including large deviation principles in boundary crossing problems for CRPs, with an explicit form of the rate functionals, and an extension of the invariance principle for CRPs to the domain of moderately large and small deviations. Applications establish the key limit laws for Markov additive processes, including limit theorems in the domains of normal and large deviations.
Download or read book Stochastic Processes written by Narahari Umanath Prabhu and published by World Scientific. This book was released on 2007 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most introductory textbooks on stochastic processes which cover standard topics such as Poisson process, Brownian motion, renewal theory and random walks deal inadequately with their applications. Written in a simple and accessible manner, this book addresses that inadequacy and provides guidelines and tools to study the applications. The coverage includes research developments in Markov property, martingales, regenerative phenomena and Tauberian theorems, and covers measure theory at an elementary level.
Download or read book Random Walks Critical Phenomena and Triviality in Quantum Field Theory written by Roberto Fernandez and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simple random walks - or equivalently, sums of independent random vari ables - have long been a standard topic of probability theory and mathemat ical physics. In the 1950s, non-Markovian random-walk models, such as the self-avoiding walk,were introduced into theoretical polymer physics, and gradu ally came to serve as a paradigm for the general theory of critical phenomena. In the past decade, random-walk expansions have evolved into an important tool for the rigorous analysis of critical phenomena in classical spin systems and of the continuum limit in quantum field theory. Among the results obtained by random-walk methods are the proof of triviality of the cp4 quantum field theo ryin space-time dimension d (::::) 4, and the proof of mean-field critical behavior for cp4 and Ising models in space dimension d (::::) 4. The principal goal of the present monograph is to present a detailed review of these developments. It is supplemented by a brief excursion to the theory of random surfaces and various applications thereof. This book has grown out of research carried out by the authors mainly from 1982 until the middle of 1985. Our original intention was to write a research paper. However, the writing of such a paper turned out to be a very slow process, partly because of our geographical separation, partly because each of us was involved in other projects that may have appeared more urgent.
Download or read book A Modern Approach to Probability Theory written by Bert E. Fristedt and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.
Download or read book Potential Functions of Random Walks in Z with Infinite Variance written by Kôhei Uchiyama and published by Springer Nature. This book was released on 2023 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the potential functions of one-dimensional recurrent random walks on the lattice of integers with step distribution of infinite variance. The central focus is on obtaining reasonably nice estimates of the potential function. These estimates are then applied to various situations, yielding precise asymptotic results on, among other things, hitting probabilities of finite sets, overshoot distributions, Green functions on long finite intervals and the half-line, and absorption probabilities of two-sided exit problems. The potential function of a random walk is a central object in fluctuation theory. If the variance of the step distribution is finite, the potential function has a simple asymptotic form, which enables the theory of recurrent random walks to be described in a unified way with rather explicit formulae. On the other hand, if the variance is infinite, the potential function behaves in a wide range of ways depending on the step distribution, which the asymptotic behaviour of many functionals of the random walk closely reflects. In the case when the step distribution is attracted to a strictly stable law, aspects of the random walk have been intensively studied and remarkable results have been established by many authors. However, these results generally do not involve the potential function, and important questions still need to be answered. In the case where the random walk is relatively stable, or if one tail of the step distribution is negligible in comparison to the other on average, there has been much less work. Some of these unsettled problems have scarcely been addressed in the last half-century. As revealed in this treatise, the potential function often turns out to play a significant role in their resolution. Aimed at advanced graduate students specialising in probability theory, this book will also be of interest to researchers and engineers working with random walks and stochastic systems.
Download or read book Foundations of Modern Probability written by Olav Kallenberg and published by Springer Science & Business Media. This book was released on 2002-01-08 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.
Download or read book Branching Random Walks written by Zhan Shi and published by Springer. This book was released on 2016-02-04 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.