EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Radiation Parameterization for Three Dimensional Inhomogeneous Cirrus Clouds Applied to ARM Data and Climate Models

Download or read book Radiation Parameterization for Three Dimensional Inhomogeneous Cirrus Clouds Applied to ARM Data and Climate Models written by Kuo-Nan Liou and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: OAK-B135 (a) We developed a 3D radiative transfer model to simulate the transfer of solar and thermal infrared radiation in inhomogeneous cirrus clouds. The model utilized a diffusion approximation approach (four-term expansion in the intensity) employing Cartesian coordinates. The required single-scattering parameters, including the extinction coefficient, single-scattering albedo, and asymmetry factor, for input to the model, were parameterized in terms of the ice water content and mean effective ice crystal size. The incorporation of gaseous absorption in multiple scattering atmospheres was accomplished by means of the correlated k-distribution approach. In addition, the strong forward diffraction nature in the phase function was accounted for in each predivided spatial grid based on a delta-function adjustment. The radiation parameterization developed herein is applied to potential cloud configurations generated from GCMs to investigate broken clouds and cloud-overlapping effects on the domain-averaged heating rate. Cloud inhomogeneity plays an important role in the determination of flux and heating rate distributions. Clouds with maximum overlap tend to produce less heating than those with random overlap. Broken clouds show more solar heating as well as more IR cooling as compared to a continuous cloud field (Gu and Liou, 2001). (b) We incorporated a contemporary radiation parameterization scheme in the UCLA atmospheric GCM in collaboration with the UCLA GCM group. In conjunction with the cloud/radiation process studies, we developed a physically-based cloud cover formation scheme in association with radiation calculations. The model clouds were first vertically grouped in terms of low, middle, and high types. Maximum overlap was then used for each cloud type, followed by random overlap among the three cloud types. Fu and Liou's 1D radiation code with modification was subsequently employed for pixel-by-pixel radiation calculations in the UCLA GCM. We showed that the simulated cloud cover and OLR fields without special tuning are comparable to those of ISCCP dataset and the results derived from radiation budget experiments. Use of the new radiation and cloud schemes enhances the radiative warming in the middle to upper tropical troposphere and alleviates the cold bias in the UCLA atmospheric GCM. We also illustrated that ice crystal size and cloud inhomogeneous are significant factors affecting the radiation budgets at the top of the atmosphere and the surface (Gu et al. 2003). (c) An innovative approach has been developed to construct a 3D field of inhomogeneous clouds in general and cirrus in particular in terms of liquid/ice water content and particle size on the basis of a unification of satellite and ground-based cloud radar data. Satellite remote sensing employing the current narrow-band spectro-radiometers has limitation and only the vertically integrated cloud parameters (optical depth and mean particle size) can be determined. However, by combining the horizontal cloud mapping inferred from satellites with the vertical structure derived from the profiling Doppler cloud radar, a 3D cloud field can be constructed. This represents a new conceptual approach to 3D remote sensing and imaging and offers a new perspective in observing the cloud structure. We applied this novel technique to AVHRR/NOAA satellite and mm-wave cloud radar data obtained from the ARM achieve and assessed the 3D cirrus cloud field with the ice crystal size distributions independently derived from optical probe measurements aboard the University of North Dakota Citation. The retrieved 3D ice water content and mean effective ice crystal size involving an impressive cirrus cloud occurring on April 18, 1997, are shown to be comparable to those derived from the analysis of collocated and coincident in situ aircraft measurements (Liou et al. 2002). (d) Detection of thin cirrus with optical depths less than 0.5, particularly those occurring i n the tropics remains a fundamental problem in remote sensing. We developed a new detection scheme for the identification of thin cirrus based on a combination of the 1.38 and 0.65 um reflectance ratio and 8.6-11 um brightness temperature difference. Results calculated from a radiative transfer model and the data obtained from MODIS onboard the Terra satellite were employed to illustrate the applicability of this approach for the regional mapping of thin cirrus. The mm-wave radar data that was coincident and collocated with the satellite data available at the ARM site was used for validation. In all cases selected, the new method was able to detect more than 85% of the thin cirrus clouds estimated to have optical depths between 0.1 and 0.9 (Roskovensky and Liou 2003b).

Book 3D Radiative Transfer in Cloudy Atmospheres

Download or read book 3D Radiative Transfer in Cloudy Atmospheres written by Alexander Marshak and published by Springer Science & Business Media. This book was released on 2006-05-27 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions.

Book Research in Progress  FY 1992

Download or read book Research in Progress FY 1992 written by United States. Department of Energy. Office of Health and Environmental Research and published by . This book was released on 1993 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Research in Progress

    Book Details:
  • Author : United States. Department of Energy. Office of Health and Environmental Research
  • Publisher :
  • Release : 1993
  • ISBN :
  • Pages : 436 pages

Download or read book Research in Progress written by United States. Department of Energy. Office of Health and Environmental Research and published by . This book was released on 1993 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Modeling of Clouds and Radiation for Developing Parameterizations for General Circulation Models  Annual Report  1994

Download or read book Modeling of Clouds and Radiation for Developing Parameterizations for General Circulation Models Annual Report 1994 written by and published by . This book was released on 1994 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are using a hierarchy of numerical models of cirrus and stratus clouds and radiative transfer to improve the reliability of general circulation models. Our detailed cloud microphysical model includes all of the physical processes believed to control the lifecycle of liquid and ice clouds in the troposphere. In our one-dimensional cirrus studies, we find that the ice crystal number and size in cirrus clouds are not very sensitive to the number of condensation nuclei which are present. We have compared our three-dimensional meoscale simulations of cirrus clouds with radar, lidar satellite and other observations of water vapor and cloud fields and find that the model accurately predicts the characteristics of a cirrus cloud system. The model results reproduce several features detected by remote sensing (lidar and radar) measurements, including the appearance of the high cirrus cloud at about 15 UTC and the thickening of the cloud at 20 UTC. We have developed a new parameterizations for production of ice crystals based on the detailed one-dimensional cloud model, and are presently testing the parameterization in three-dimensional simulations of the FIRE-II November 26 case study. We have analyzed NWS radiosonde humidity data from FIRE and ARM and found errors, biases, and uncertainties in the conversion of the sensed resistance to humidity.

Book Radiation and Cloud Processes in the Atmosphere

Download or read book Radiation and Cloud Processes in the Atmosphere written by Kuo-Nan Liou and published by Oxford University Press on Demand. This book was released on 1992 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an up-to-date treatment of atmospheric science and the key roles of solar radiation and cloud layers.

Book Carbon Dioxide and Climate

Download or read book Carbon Dioxide and Climate written by and published by . This book was released on 1990 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS AIRS MODIS Data and Its Application to Climate Model

Download or read book Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS AIRS MODIS Data and Its Application to Climate Model written by and published by . This book was released on 2016 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the report period, we have made the following research accomplishments. First, we performed analysis for a number of MODIS scenes comprising of heavy dust events and ice clouds, covering regions of frequent dust outbreaks in East Asia, Middle East, and West Africa, as well as areas associated with long-range dust transports over the Equatorial Tropical Atlantic Ocean. These scenes contain both dust/aerosols and clouds. We collected suitable aerosol/ice-cloud data, correlated ice cloud and aerosol parameters by means of statistical analysis, and interpreted resulting correlation trends based on the physical principles governing cloud microphysics. Aerosol and cloud optical depths and cloud effective particle size inferred from MODIS for selected domains were analyzed from which the parameters including dust aerosol number concentration, ice cloud water path, and ice particle number concentration were subsequently derived. We illustrated that the Twomey (solar albedo) effect can be statistically quantified based on the slope of best-fit straight lines in the correlation study. Analysis of aerosol and cloud retrieval products revealed that for all cases, the region with a larger dust aerosol optical depth is always characterized by a smaller cloud particle size, consistent with the Twomey hypothesis for aerosol-cloud interactions. Second, we developed mean correlation curves with uncertainties associated with small ice-crystal concentration observations for the mean effective ice crystal size (De) and ice water content (IWC) by dividing the atmosphere into three characteristic regions: Tropics cirrus, Midlatitude cirrus, including a temperature classification to improve correlation, and Arctic ice clouds. We illustrated that De has a high correlation with IWC based on theoretical consideration and analysis of thousands of observed ice crystal data obtained from a number of ARM-DOE field campaigns and other experiments. The correlation has the form: ln(De) = a + b ln(IWC) + c ((ln(IWC))2, where a, b, and c are fitting coefficients and are functions of three regions. We demonstrated that this correlation can be effectively incorporated in GCMs and climate models that predict IWC - a significant advance in ice microphysics parameterization for interactive cloud-radiation analysis and feedback. Substantial July mean differences are shown in the OLR (W/m2) and precipitation (mm/day) patterns between UCLA GCM simulations based on Des determined from the De-IWC correlations and the control run using a fixed ice crystal size. Third, in order to improve the computation of spectral radiative transfer processes in the WRF model, we developed a consistent and efficient radiation scheme that can better resolve the spectral bands, determine the cloud optical properties, and provide more reliable and accurate radiative heating fields. In the newly developed radiation module, we have implemented in WRF a modified and improved version referred to as the Fu-Liou-Gu scheme, which includes a combination of delta-four-stream and delta-two-stream approximations for solar and IR flux calculations, respectively. This combination has been proven to be computationally efficient and at the same time to produce a high degree of accuracy. The incorporation of nongray gaseous absorption in multiple scattering atmospheres was based on the correlated k-distribution method. The solar and IR spectra are divided into 6 and 12 bands, respectively, according to the location of absorption bands of H2O, CO2, O3, CH4, N2O, and CFCs. We further included absorption by the water vapor continuum and a number of minor absorbers in the solar spectrum leading to an additional absorption of solar flux in a clear atmosphere on the order of 1-3 W/m2. Additionally, we incorporated the ice microphysics parameterization that includes an interactive mean effective ice crystal size in association with radiation parameterizations. The Fu-Liou-Gu scheme is an ideal tool for t ...

Book Atmospheric Radiation Measurement Program Science Plan

Download or read book Atmospheric Radiation Measurement Program Science Plan written by T. Ackerman and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1999 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Single Column Modeling  GCM Parameterizations and Atmospheric Radiation Measurement Data

Download or read book Single Column Modeling GCM Parameterizations and Atmospheric Radiation Measurement Data written by and published by . This book was released on 2005 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional models. One fruitful strategy for evaluating advances in parameterizations has turned out to be using short-range numerical weather prediction as a test-bed within which to implement and improve parameterizations for modeling and predicting climate variability. The global models we have used to date are the CAM atmospheric component of the National Center for Atmospheric Research (NCAR) CCSM climate model as well as the National Centers for Environmental Prediction (NCEP) numerical weather prediction model, thus allowing testing in both climate simulation and numerical weather prediction modes. We present detailed results of these tests, demonstrating the sensitivity of model performance to changes in parameterizations.

Book Parameterization and Analysis of 3 D Radiative Transfer in Clouds

Download or read book Parameterization and Analysis of 3 D Radiative Transfer in Clouds written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and found that local effects were often much larger than the overall values mentioned above, and were especially large for high sun and near convective clouds such as cumulus. The study also found that statistical methods such as neural networks appear promising for enabling cloud models to consider radiative interactions between nearby atmospheric columns. Finally, through collaboration with German scientists, the project found that new methods (especially one called stepwise kriging) show great promise in filling gaps between cloud radar scans. If applied to data from the new DOE scanning cloud radars, these methods can yield large, continuous three-dimensional cloud structures for future radiative simulations.

Book Cloud radiation Interactions and Their Parameterization in Climate Models

Download or read book Cloud radiation Interactions and Their Parameterization in Climate Models written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This report contains papers from the International Workshop on Cloud-Radiation Interactions and Their Parameterization in Climate Models met on 18--20 October 1993 in Camp Springs, Maryland, USA. It was organized by the Joint Working Group on Clouds and Radiation of the International Association of Meteorology and Atmospheric Sciences. Recommendations were grouped into three broad areas: (1) general circulation models (GCMs), (2) satellite studies, and (3) process studies. Each of the panels developed recommendations on the. themes of the workshop. Explicitly or implicitly, each panel independently recommended observations of basic cloud microphysical properties (water content, phase, size) on the scales resolved by GCMs. Such observations are necessary to validate cloud parameterizations in GCMs, to use satellite data to infer radiative forcing in the atmosphere and at the earth's surface, and to refine the process models which are used to develop advanced cloud parameterizations.

Book Light Scattering by Ice Crystals

Download or read book Light Scattering by Ice Crystals written by Kuo-Nan Liou and published by Cambridge University Press. This book was released on 2016-10-06 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume outlines the fundamentals and applications of light scattering, absorption and polarization processes involving ice crystals.

Book Meteorological and Geoastrophysical Abstracts

Download or read book Meteorological and Geoastrophysical Abstracts written by and published by . This book was released on 1997 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spring Meeting

    Book Details:
  • Author : American Geophysical Union. Meeting
  • Publisher :
  • Release : 2001
  • ISBN :
  • Pages : 514 pages

Download or read book Spring Meeting written by American Geophysical Union. Meeting and published by . This book was released on 2001 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Climate Intervention

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2015-06-23
  • ISBN : 0309314852
  • Pages : 276 pages

Download or read book Climate Intervention written by National Research Council and published by National Academies Press. This book was released on 2015-06-23 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The growing problem of changing environmental conditions caused by climate destabilization is well recognized as one of the defining issues of our time. The root problem is greenhouse gas emissions, and the fundamental solution is curbing those emissions. Climate geoengineering has often been considered to be a "last-ditch" response to climate change, to be used only if climate change damage should produce extreme hardship. Although the likelihood of eventually needing to resort to these efforts grows with every year of inaction on emissions control, there is a lack of information on these ways of potentially intervening in the climate system. As one of a two-book report, this volume of Climate Intervention discusses albedo modification - changing the fraction of incoming solar radiation that reaches the surface. This approach would deliberately modify the energy budget of Earth to produce a cooling designed to compensate for some of the effects of warming associated with greenhouse gas increases. The prospect of large-scale albedo modification raises political and governance issues at national and global levels, as well as ethical concerns. Climate Intervention: Reflecting Sunlight to Cool Earth discusses some of the social, political, and legal issues surrounding these proposed techniques. It is far easier to modify Earth's albedo than to determine whether it should be done or what the consequences might be of such an action. One serious concern is that such an action could be unilaterally undertaken by a small nation or smaller entity for its own benefit without international sanction and regardless of international consequences. Transparency in discussing this subject is critical. In the spirit of that transparency, Climate Intervention: Reflecting Sunlight to Cool Earth was based on peer-reviewed literature and the judgments of the authoring committee; no new research was done as part of this study and all data and information used are from entirely open sources. By helping to bring light to this topic area, this book will help leaders to be far more knowledgeable about the consequences of albedo modification approaches before they face a decision whether or not to use them.