EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Radiation Tolerant Electronics

Download or read book Radiation Tolerant Electronics written by Paul Leroux and published by MDPI. This book was released on 2019-08-26 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.

Book Radiation Hardening by Design  RHBD  Analog Integrated Circuits

Download or read book Radiation Hardening by Design RHBD Analog Integrated Circuits written by Umberto Gatti and published by . This book was released on 2021-10-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended for researchers and professionals interested in understanding how to design and make a preliminary characterization of Radiation Hardened (rad-hard) analog and mixed-signal circuits, exploiting standard CMOS manufacturing processes available from different silicon foundries and using different technology nodes. It starts with an introductory overview of the effects of radiation in space and harsh environments with a specific focus on analog circuits to enable the reader to understand why specific design solutions are adopted to mitigate hard/soft errors. The following four Chapters are devoted to RHBD (Radiation Hardening by Design) techniques for semiconductor components applied to Operational Amplifiers, Voltage References, Analog-to-Digital (ADC) and Digital-to-Analog (DAC) converters. Each Chapter is organized with a first part which recalls the basic working principles of such circuit and a second part which describes the main RHBD techniques proposed in the literature to make them resilient to radiation. The approach follows a top-down scheme starting from RHBD at circuit level (how to mitigate radiation effects by handling transistors in the proper way) and finishing at layout level (how to shape a layout to mitigate radiation effects). The last-but-one Chapter is devoted to a special class of analog circuit, the dosimeters, which are gaining importance in space, health and nuclear applications. By leveraging the characteristic of a Flash-memory cell, a re-usable dosimeter is described which includes the sensitive element itself, the analog interface and the process of characterization. The last part is an overview of the strategies adopted for the testing of analog and mixed-signal circuits. In particular, it will focus also on the measurement campaigns performed by the Authors aiming for the characterization of developed rad-hard components under total dose (TID) and single-events (SEE). Technical topics discussed in the book include: - Radiation effects on semiconductor components (TID, SEE) - Radiation Hardening by Design (RHBD) Techniques - Rad-hard Operational Amplifiers - Rad-hard Voltage References - Rad-hard ADC - Rad-hard DAC - Rad-hard Special Circuits - Testing Strategies

Book Radiation Tolerant Electronics

Download or read book Radiation Tolerant Electronics written by Paul Leroux and published by . This book was released on 2019 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.

Book Hardening Semiconductor Components Against Radiation and Temperature

Download or read book Hardening Semiconductor Components Against Radiation and Temperature written by William R. Dawes and published by William Andrew. This book was released on 1989 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes hardening of semiconductor components against radiation and temperature. Basic mechanisms of radiation effects on electronic materials and devices are discussed first, followed by such practical topics as hardening technologies, circuit design for hardening, and, finally, hardness assurance. Discussions center mainly on silicon technology.

Book Integrated Circuit Design for Radiation Environments

Download or read book Integrated Circuit Design for Radiation Environments written by Stephen J. Gaul and published by John Wiley & Sons. This book was released on 2019-12-03 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.

Book Radiation Hardened CMOS Integrated Circuits for Time Based Signal Processing

Download or read book Radiation Hardened CMOS Integrated Circuits for Time Based Signal Processing written by Jeffrey Prinzie and published by Springer. This book was released on 2018-04-26 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art techniques for radiation hardened high-resolution Time-to-Digital converters and low noise frequency synthesizers. Throughout the book, advanced degradation mechanisms and error sources are discussed and several ways to prevent such errors are presented. An overview of the prerequisite physics of nuclear interactions is given that has been compiled in an easy to understand chapter. The book is structured in a way that different hardening techniques and solutions are supported by theory and experimental data with their various tradeoffs. Based on leading-edge research, conducted in collaboration between KU Leuven and CERN, the European Center for Nuclear Research Describes in detail advanced techniques to harden circuits against ionizing radiation Provides a practical way to learn and understand radiation effects in time-based circuits Includes an introduction to the underlying physics, circuit design, and advanced techniques accompanied with experimental data

Book Radiation Tolerant Electronics  Volume II

Download or read book Radiation Tolerant Electronics Volume II written by Paul LeRoux and published by Mdpi AG. This book was released on 2023-01-16 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade. After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects.

Book Radiation Tolerant Electronics  Volume II

Download or read book Radiation Tolerant Electronics Volume II written by Paul Leroux and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on radiation tolerant electronics has increased rapidly over the last few years, resulting in many interesting approaches to model radiation effects and design radiation hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation hardened electronics for space applications, high-energy physics experiments such as those on the large hadron collider at CERN, and many terrestrial nuclear applications, including nuclear energy and safety management. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their ionizing radiation susceptibility has raised many exciting challenges, which are expected to drive research in the coming decade.After the success of the first Special Issue on Radiation Tolerant Electronics, the current Special Issue features thirteen articles highlighting recent breakthroughs in radiation tolerant integrated circuit design, fault tolerance in FPGAs, radiation effects in semiconductor materials and advanced IC technologies and modelling of radiation effects.

Book Effects of Radiation on Materials

Download or read book Effects of Radiation on Materials written by Arvind S. Kumar and published by ASTM International. This book was released on 1994 with total page 1319 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiation Effects on Embedded Systems

Download or read book Radiation Effects on Embedded Systems written by Raoul Velazco and published by Springer Science & Business Media. This book was released on 2007-06-19 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides an extensive overview of radiation effects on integrated circuits, offering major guidelines for coping with radiation effects on components. It contains a set of chapters based on the tutorials presented at the International School on Effects of Radiation on Embedded Systems for Space Applications (SERESSA) that was held in Manaus, Brazil, November 20-25, 2005.

Book Radiation Harden Devices and Circuits for Analog Application

Download or read book Radiation Harden Devices and Circuits for Analog Application written by Chandra Prakash Jain and published by LAP Lambert Academic Publishing. This book was released on 2011-09-01 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliability of Operating Electronic equipments on board of artificial satellites, spacecrafts, and military aircraft's in extreme environment require radiation hardening. The effects of radiation, both single event and total ionization dose on the phase frequency detector, voltage controlled oscillator, charge pump and filters for PLL application are studied. The focus is on and CMOS based technologies; however, other high performance technologies will be discussed wherever appropriate. The points of concern are single event effects (SEE) and steady state total ionizing dose (TID) IC response. Specific design architecture and techniques are implemented including radiation effects, radiation hardening technique, PLL building blocks and the overall performance to help mitigate radiation effects that degrade PLL performance. This book aims towards the design and analysis of a radiation hardening of all individual components of Rad-hard PLL starting from process simulation and device simulation to Circuit simulation using 0.5um CMOS library.

Book Appropriate Hardening Mechanisms in Alkali Halide Materials for High Power 10 6 Micrometers Windows

Download or read book Appropriate Hardening Mechanisms in Alkali Halide Materials for High Power 10 6 Micrometers Windows written by Harold Posen and published by . This book was released on 1972 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: The criteria for the selection of alkali halides as high power 10.6 micrometer laser window materials are discussed. Experiments for improving the mechanical properties of these materials, such as hardening, hot forging and alloying are described. Also a discussion of the damage mechanism in KCl is given. (Author).

Book Rad hard Semiconductor Memories

Download or read book Rad hard Semiconductor Memories written by Cristiano Calligaro and published by CRC Press. This book was released on 2022-09-01 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rad-hard Semiconductor Memories is intended for researchers and professionals interested in understanding how to design and make a preliminary evaluation of rad-hard semiconductor memories, making leverage on standard CMOS manufacturing processes available from different silicon foundries and using different technology nodes.In the first part of the book, a preliminary overview of the effects of radiation in space, with a specific focus on memories, will be conducted to enable the reader to understand why specific design solutions are adopted to mitigate hard and soft errors. The second part will be devoted to RHBD (Radiation Hardening by Design) techniques for semiconductor components with a specific focus on memories. The approach will follow a top-down scheme starting from RHBD at architectural level (how to build a rad-hard floor-plan), at circuit level (how to mitigate radiation effects by handling transistors in the proper way) and at layout level (how to shape a layout to mitigate radiation effects).After the description of the mitigation techniques, the book enters in the core of the topic covering SRAMs (synchronous, asynchronous, single port and dual port) and PROMs (based on AntiFuse OTP technologies), describing how to design a rad-hard flash memory and fostering RHBD toward emerging memories like ReRAM. The last part will be a leap into emerging memories at a very early stage, not yet ready for industrial use in silicon but candidates to become an option for the next wave of rad-hard components. Technical topics discussed in the book include:  Radiation effects on semiconductor components (TID, SEE) Radiation Hardening by Design (RHBD) Techniques Rad-hard SRAMs Rad-hard PROMs Rad-hard Flash NVMs Rad-hard ReRAMs Rad-hard emerging technologies

Book Rad hard Semiconductor Memories

Download or read book Rad hard Semiconductor Memories written by Calligaro, Cristiano and published by River Publishers. This book was released on 2019-01-30 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rad-hard Semiconductor Memories is intended for researchers and professionals interested in understanding how to design and make a preliminary evaluation of rad-hard semiconductor memories, making leverage on standard CMOS manufacturing processes available from different silicon foundries and using different technology nodes. In the first part of the book, a preliminary overview of the effects of radiation in space, with a specific focus on memories, will be conducted to enable the reader to understand why specific design solutions are adopted to mitigate hard and soft errors. The second part will be devoted to RHBD (Radiation Hardening by Design) techniques for semiconductor components with a specific focus on memories. The approach will follow a top-down scheme starting from RHBD at architectural level (how to build a rad-hard floor-plan), at circuit level (how to mitigate radiation effects by handling transistors in the proper way) and at layout level (how to shape a layout to mitigate radiation effects). After the description of the mitigation techniques, the book enters in the core of the topic covering SRAMs (synchronous, asynchronous, single port and dual port) and PROMs (based on AntiFuse OTP technologies), describing how to design a rad-hard flash memory and fostering RHBD toward emerging memories like ReRAM. The last part will be a leap into emerging memories at a very early stage, not yet ready for industrial use in silicon but candidates to become an option for the next wave of rad-hard components. Technical topics discussed in the book include: Radiation effects on semiconductor components (TID, SEE)Radiation Hardening by Design (RHBD) TechniquesRad-hard SRAMsRad-hard PROMsRad-hard Flash NVMsRad-hard ReRAMsRad-hard emerging technologies

Book Integrated Circuit Design for Radiation Environments

Download or read book Integrated Circuit Design for Radiation Environments written by Stephen J. Gaul and published by John Wiley & Sons. This book was released on 2019-12-31 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to the effects of radiation on semiconductor components of electronic systems, and techniques for the designing, laying out, and testing of hardened integrated circuits This book teaches the fundamentals of radiation environments and their effects on electronic components, as well as how to design, lay out, and test cost-effective hardened semiconductor chips not only for today’s space systems but for commercial terrestrial applications as well. It provides a historical perspective, the fundamental science of radiation, and the basics of semiconductors, as well as radiation-induced failure mechanisms in semiconductor chips. Integrated Circuits Design for Radiation Environments starts by introducing readers to semiconductors and radiation environments (including space, atmospheric, and terrestrial environments) followed by circuit design and layout. The book introduces radiation effects phenomena including single-event effects, total ionizing dose damage and displacement damage) and shows how technological solutions can address both phenomena. Describes the fundamentals of radiation environments and their effects on electronic components Teaches readers how to design, lay out and test cost-effective hardened semiconductor chips for space systems and commercial terrestrial applications Covers natural and man-made radiation environments, space systems and commercial terrestrial applications Provides up-to-date coverage of state-of-the-art of radiation hardening technology in one concise volume Includes questions and answers for the reader to test their knowledge Integrated Circuits Design for Radiation Environments will appeal to researchers and product developers in the semiconductor, space, and defense industries, as well as electronic engineers in the medical field. The book is also helpful for system, layout, process, device, reliability, applications, ESD, latchup and circuit design semiconductor engineers, along with anyone involved in micro-electronics used in harsh environments.

Book Radiation Effects on Integrated Circuits and Systems for Space Applications

Download or read book Radiation Effects on Integrated Circuits and Systems for Space Applications written by Raoul Velazco and published by Springer. This book was released on 2019-04-10 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with invaluable overviews and updates of the most important topics in the radiation-effects field, enabling them to face significant challenges in the quest for the insertion of ever-higher density and higher performance electronic components in satellite systems. Readers will benefit from the up-to-date coverage of the various primary (classical) sub-areas of radiation effects, including the space and terrestrial radiation environments, basic mechanisms of total ionizing dose, digital and analog single-event transients, basic mechanisms of single-event effects, system-level SEE analysis, device-level, circuit-level and system-level hardening approaches, and radiation hardness assurance. Additionally, this book includes in-depth discussions of several newer areas of investigation, and current challenges to the radiation effects community, such as radiation hardening by design, the use of Commercial-Off-The-Shelf (COTS) components in space missions, CubeSats and SmallSats, the use of recent generation FPGA’s in space, and new approaches for radiation testing and validation. The authors provide essential background and fundamentals, in addition to information on the most recent advances and challenges in the sub-areas of radiation effects. Provides a concise introduction to the fundamentals of radiation effects, latest research results, and new test methods and procedures; Discusses the radiation effects and mitigation solutions for advanced integrated circuits and systems designed to operate in harsh radiation environments; Includes coverage of the impact of Small Satellites in the space industry.