EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Semiconductor Radiation Detectors

Download or read book Semiconductor Radiation Detectors written by Gerhard Lutz and published by Springer. This book was released on 2007-06-15 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage.

Book Radiation Damage in Semiconductor Detectors

Download or read book Radiation Damage in Semiconductor Detectors written by and published by . This book was released on 1981 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced.

Book Measurement of Nuclear Radiation with Semiconductor Detectors

Download or read book Measurement of Nuclear Radiation with Semiconductor Detectors written by D. N. Poenaru and published by . This book was released on 1969 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: CONTENTS - MAIN NOTATIONS - CONTENTS - CHAPTER I. - INTERACTION OF THE NUCLEAR RADIATION WITH MATTER - 1.1. Interaction of heavy charged particles with matter - 1.2. Passage of electrons through matter - 1.3. Interaction processes of gamma and X-rays - 1.4. Interaction processes of neutrons - 1.5. Conclusions - CHAPTER II. - FUNDAMENTAL PROCESSES IN SEMICONDUCTORS AND METALS - 2.1. Schrödinger equation. The particle inside the potential well - 2.2. The hydrogen atom - 2.3. Theory of the periodic system of elements - 2.4. Electrons in crystals - 2.5. Effective mass - 2.6. Energy bands - 2.7. Statistical distributions - 2.8. Equilibrium density of charge carriers in semiconductors - 2.9. Transport phenomena - 2.10. Recombination phenomena - 2.11. P-N junction - 2.12. Phenomena at the metal-semiconductor interface - CHAPTER III. - WORKING PRINCIPLES OF NUCLEAR RADIATION SEMICONDUCTOR DETECTORS - 3.1. Charge-carrier injection. The mean energy for electron-hole pair production - 3.2. The drift of charge-carriers in the electric field. The shape of the current and voltage pulse given by the collection of a single pair. - 3.3. Collection time of electron-hole pairs in a P-N abrupt junction - 3.4. Collection time of electron-hole pairs in coaxial Ge (Li) detectors - 3.5. Influence of SD equivalent circuit elements on the voltage and current pulse shape - 3.6. Collection of charge-carriers in real devices - 3.7. Collection of electric charges by diffusion from outside the depletion layer - 3.8. Detector noise - 3.9. Detector energy resolution - CHAPTER IV - CHARACTERISTICS OF SEMICONDUCTOR DETECTORS - 4.1. Electrical characteristics - 4.2. Detection characteristics - 4.3. Effects of temperature, magnetic field and light on the semiconductor detector characteristics - 4.4. Detector sensitivity to neutrons and gamma-rays - 4.5. Effects of radiation damage on detector characteristics - CHAPTER V - SEMICONDUCTOR DETECTOR TYPES - 5.1. Methods for obtaining high electric fields in semiconductors - 5.2. Homogeneous semiconductor detectors - 5.3. Diffused N-P junction detectors - 5.4. Surface-barrier detectors - 5.5. Guard-ring detectors - 5.6. Totally depleted detectors - 5.7. Neutron detectors - 5.8. Special detectors - 5.9. NIP detectors - CHAPTER VI - AMPLIFICATION OF SEMICONDUCTOR DETECTOR ELECTRIC PULSES - 6.1. Electric charge to voltage pulse conversion - 6.2. Charge-sensitive-preamplifier-noise specification and measurement - 6.S. Amplifier-noise sources - 6.4. Effects of amplifier shaping circuits on noise spectra - 6.5. RC-RC amplifier signal to noise ratio - CHAPTER VII - SEMICONDUCTOR DETECTOR ASSOCIATED ELECTRONICS - 7.1. Spectrometers with semiconductor detectors - 7.2. Charge sensitive preamplifiers - 7.3. Main amplifier - 7.4. Amplitude analyser and expander - 7.5. High amplitude stability pulse generator - 7.6. Transistorized apparatus - APPENDIX A I: Basic properties of Si and Ge - APPENDIX A II: Main natural and artificial alpha sources - APPENDIX A III: Analysis of some circuits used in charge sensitive preamplifiers - REFERENCES -

Book Radiation Effects in Advanced Semiconductor Materials and Devices

Download or read book Radiation Effects in Advanced Semiconductor Materials and Devices written by C. Claeys and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: This wide-ranging book summarizes the current knowledge of radiation defects in semiconductors, outlining the shortcomings of present experimental and modelling techniques and giving an outlook on future developments. It also provides information on the application of sensors in nuclear power plants.

Book Radiation Effects in Semiconductors

Download or read book Radiation Effects in Semiconductors written by Krzysztof Iniewski and published by CRC Press. This book was released on 2018-09-03 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: Space applications, nuclear physics, military operations, medical imaging, and especially electronics (modern silicon processing) are obvious fields in which radiation damage can have serious consequences, i.e., degradation of MOS devices and circuits. Zeroing in on vital aspects of this broad and complex topic, Radiation Effects in Semiconductors addresses the ever-growing need for a clear understanding of radiation effects on semiconductor devices and circuits to combat potential damage it can cause. Features a chapter authored by renowned radiation authority Lawrence T. Clark on Radiation Hardened by Design SRAM Strategies for TID and SEE Mitigation This book analyzes the radiation problem, focusing on the most important aspects required for comprehending the degrading effects observed in semiconductor devices, circuits, and systems when they are irradiated. It explores how radiation interacts with solid materials, providing a detailed analysis of three ways this occurs: Photoelectric effect, Compton effect, and creation of electron-positron pairs. The author explains that the probability of these three effects occurring depends on the energy of the incident photon and the atomic number of the target. The book also discusses the effects that photons can have on matter—in terms of ionization effects and nuclear displacement Written for post-graduate researchers, semiconductor engineers, and nuclear and space engineers with some electronics background, this carefully constructed reference explains how ionizing radiation is creating damage in semiconducting devices and circuits and systems—and how that damage can be avoided in areas such as military/space missions, nuclear applications, plasma damage, and X-ray-based techniques. It features top-notch international experts in industry and academia who address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.

Book Radiation Damage Effects in Semiconductor Nuclear Particle Detectors

Download or read book Radiation Damage Effects in Semiconductor Nuclear Particle Detectors written by W NEWELL (JR.) and published by . This book was released on 1960 with total page 1 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiation damage in semiconductor radiation detectors

Download or read book Radiation damage in semiconductor radiation detectors written by F. M. Beeftink and published by . This book was released on 1975 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Particle Detection and Imaging

Download or read book Handbook of Particle Detection and Imaging written by Claus Grupen and published by Springer Science & Business Media. This book was released on 2012-01-08 with total page 1251 pages. Available in PDF, EPUB and Kindle. Book excerpt: The handbook centers on detection techniques in the field of particle physics, medical imaging and related subjects. It is structured into three parts. The first one is dealing with basic ideas of particle detectors, followed by applications of these devices in high energy physics and other fields. In the last part the large field of medical imaging using similar detection techniques is described. The different chapters of the book are written by world experts in their field. Clear instructions on the detection techniques and principles in terms of relevant operation parameters for scientists and graduate students are given.Detailed tables and diagrams will make this a very useful handbook for the application of these techniques in many different fields like physics, medicine, biology and other areas of natural science.

Book Reliability and Radiation Effects in Compound Semiconductors

Download or read book Reliability and Radiation Effects in Compound Semiconductors written by Allan H. Johnston and published by World Scientific. This book was released on 2010 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. It starts with first principles, and shows how advances in device design and manufacturing have suppressed many of the older reliability mechanisms. It is the first book that comprehensively covers reliability and radiation effects in optoelectronic as well as microelectronic devices. It contrasts reliability mechanisms of compound semiconductors with those of silicon-based devices, and shows that the reliability of many compound semiconductors has improved to the level where they can be used for ten years or more with low failure rates.

Book Semiconductor Detector Systems

Download or read book Semiconductor Detector Systems written by Helmuth Spieler and published by OUP Oxford. This book was released on 2005-08-25 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor sensors patterned at the micron scale combined with custom-designed integrated circuits have revolutionized semiconductor radiation detector systems. Designs covering many square meters with millions of signal channels are now commonplace in high-energy physics and the technology is finding its way into many other fields, ranging from astrophysics to experiments at synchrotron light sources and medical imaging. This book is the first to present a comprehensive discussion of the many facets of highly integrated semiconductor detector systems, covering sensors, signal processing, transistors and circuits, low-noise electronics, and radiation effects. The diversity of design approaches is illustrated in a chapter describing systems in high-energy physics, astronomy, and astrophysics. Finally a chapter "Why things don't work" discusses common pitfalls. Profusely illustrated, this book provides a unique reference in a key area of modern science.

Book Electronics for Radiation Detection

Download or read book Electronics for Radiation Detection written by Krzysztof Iniewski and published by CRC Press. This book was released on 2018-09-03 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a growing need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Assessing the billion-dollar market for detection equipment in the context of medical imaging using ionizing radiation, Electronics for Radiation Detection presents valuable information that will help integrated circuit (IC) designers and other electronics professionals take full advantage of the tremendous developments and opportunities associated with this burgeoning field. Assembling contributions from industrial and academic experts, this book— Addresses the state of the art in the design of semiconductor detectors, integrated circuits, and other electronics used in radiation detection Analyzes the main effects of radiation in semiconductor devices and circuits, paying special attention to degradation observed in MOS devices and circuits when they are irradiated Explains how circuits are built to deal with radiation, focusing on practical information about how they are being used, rather than mathematical details Radiation detection is critical in space applications, nuclear physics, semiconductor processing, and medical imaging, as well as security, drug development, and modern silicon processing techniques. The authors discuss new opportunities in these fields and address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches. Aimed at postgraduate researchers and practicing engineers, this book is a must for those serious about improving their understanding of electronics used in radiation detection. The information presented here can help you make optimal use of electronic detection equipment and stimulate further interest in its development, use, and benefits.

Book Experimental Studies of Radiation Damage of Silicon Detectors  Internal Report

Download or read book Experimental Studies of Radiation Damage of Silicon Detectors Internal Report written by and published by . This book was released on 1994 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences.

Book Particle Physics Reference Library

Download or read book Particle Physics Reference Library written by Christian W. Fabjan and published by Springer Nature. This book was released on 2020 with total page 1083 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access

Book Radiation Damage Measurements in Room Temperature Semiconductor Radiation Detectors

Download or read book Radiation Damage Measurements in Room Temperature Semiconductor Radiation Detectors written by and published by . This book was released on 1998 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI2) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 101° p/cm2 and significant bulk leakage after 1012 p/cm2. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 × 109 p/cm2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum of neutrons after fluences up to 101° n/cm2, although activation was evident. Exposures of CZT to 5 MeV alpha particle at fluences up to 1.5 × 101° [alpha]/cm2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5 × 109 [alpha]/cm2. CT detectors show resolution losses after fluences of 3 × 109 p/cm2 at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 × 101° n/cm2. Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 1012 p/cm2 and with 1.5 GeV protons at fluences up to 1.2 × 108 p/cm2. Neutron exposures at 8 MeV have been reported at fluences up to 1015 n/cm2. No radiation damage was reported under these irradiation conditions.

Book Radiation Effects in Semiconductor Devices

Download or read book Radiation Effects in Semiconductor Devices written by Frank Larin and published by . This book was released on 1968 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Radiation Effects on Semiconductor Devices

Download or read book Radiation Effects on Semiconductor Devices written by Los Alamos Scientific Laboratory and published by . This book was released on 1961 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Compound Semiconductor Radiation Detectors

Download or read book Compound Semiconductor Radiation Detectors written by Alan Owens and published by Taylor & Francis. This book was released on 2016-04-19 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many applications, compound semiconductors are now viable competitors to elemental semiconductors because of their wide range of physical properties. This book describes all aspects of radiation detection and measurement using compound semiconductors, including crystal growth, detector fabrication, contacting, and spectroscopic performance (with particular emphasis on the X- and gamma-ray regimes). A concentrated reference for researchers in various disciplines as well as graduate students in specialized courses, the text outlines the potential and limitations of semiconductor detectors.