EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantum Confined Excitons in 2 Dimensional Materials

Download or read book Quantum Confined Excitons in 2 Dimensional Materials written by Carmen Palacios-Berraquero and published by Springer. This book was released on 2018-11-02 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the first established experimental results of an emergent field: 2-dimensional materials as platforms for quantum technologies, specifically through the optics of quantum-confined excitons. It also provides an extensive review of the literature from a number of disciplines that informed the research, and introduces the materials of focus – 2d Transition Metal Dichalcogenides (2d-TMDs) – in detail, discussing electronic and chemical structure, excitonic behaviour and response to strain. This is followed by a brief overview of quantum information technologies, including concepts such as single-photon sources and quantum networks. The methods chapter addresses quantum optics techniques and 2d-material processing, while the results section shows the development of a method to deterministically create quantum dots (QDs) in the 2d-TMDs, which can trap single-excitons; the fabrication of atomically thin quantum light-emitting diodes to induce all-electrical single-photon emission from the QDs, and lastly, the use of devices to controllably trap single-spins in the QDs –the first step towards their use as optically-addressable matter qubits.

Book Advances in Condensed Matter and Materials Physics

Download or read book Advances in Condensed Matter and Materials Physics written by Jagannathan Thirumalai and published by BoD – Books on Demand. This book was released on 2020-05-06 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, Condensed Matter and Material Physics, incorporates the work of multiple authors to enhance the theoretical as well as experimental knowledge of materials. The investigation of crystalline solids is a growing need in the electronics industry. Micro and nano transistors require an in-depth understanding of semiconductors of different groups. Amorphous materials, on the other hand, as non-equilibrium materials are widely applied in sensors and other medical and industrial applications. Superconducting magnets, composite materials, lasers, and many more applications are integral parts of our daily lives. Superfluids, liquid crystals, and polymers are undergoing active research throughout the world. Hence profound information on the nature and application of various materials is in demand. This book bestows on the reader a deep knowledge of physics behind the concepts, perspectives, characteristic properties, and prospects. The book was constructed using 10 contributions from experts in diversified fields of condensed matter and material physics and its technology from over 15 research institutes across the globe.

Book Magneto Photoluminescence and Ultrafast Spectroscopy on High Mobility Two Dimensional Electron Systems

Download or read book Magneto Photoluminescence and Ultrafast Spectroscopy on High Mobility Two Dimensional Electron Systems written by Patrick Schröter and published by Cuvillier Verlag. This book was released on 2004 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Chi Sin Tang and published by John Wiley & Sons. This book was released on 2023-11-08 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional Transition-Metal Dichalcogenides Comprehensive resource covering rapid scientific and technological development of polymorphic two-dimensional transition-metal dichalcogenides (2D-TMDs) over a range of disciplines and applications Two-Dimensional Transition-Metal Dichalcogenides: Phase Engineering and Applications in Electronics and Optoelectronics provides a discussion on the history of phase engineering in 2D-TMDs as well as an in-depth treatment on the structural and electronic properties of 2D-TMDs in their respective polymorphic structures. The text addresses different forms of in-situ synthesis, phase transformation, and characterization methods for 2D-TMD materials and provides a comprehensive treatment of both the theoretical and experimental studies that have been conducted on 2D-TMDs in their respective phases. Two-Dimensional Transition-Metal Dichalcogenides includes further information on: Thermoelectric, fundamental spin-orbit structures, Weyl semi-metallic, and superconductive and related ferromagnetic properties that 2D-TMD materials possess Existing and prospective applications of 2D-TMDs in the field of electronics and optoelectronics as well as clean energy, catalysis, and memristors Magnetism and spin structures of polymorphic 2D-TMDs and further considerations on the challenges confronting the utilization of TMD-based systems Recent progress of mechanical exfoliation and the application in the study of 2D materials and other modern opportunities for progress in the field Two-Dimensional Transition-Metal Dichalcogenides provides in-depth review introducing the electronic properties of two-dimensional transition-metal dichalcogenides with updates to the phase engineering transition strategies and a diverse range of arising applications, making it an essential resource for scientists, chemists, physicists, and engineers across a wide range of disciplines.

Book Two Dimensional Transition Metal Dichalcogenides

Download or read book Two Dimensional Transition Metal Dichalcogenides written by Alexander V. Kolobov and published by Springer. This book was released on 2016-07-26 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Book Anisotropic 2D Materials and Devices

Download or read book Anisotropic 2D Materials and Devices written by Yuerui Lu and published by Royal Society of Chemistry. This book was released on 2022-09-23 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting recent progress in anisotropic 2D materials research, reader is introduced to phosphorene and its arsenic alloys, monochalcogenides of group IV elements in the form of MX (M = Ge, Sn and X = S, Se, Te), low-symmetry transition-metal dichalcogenide (TMD) materials such as rhenium disulphide (ReS2) and rhenium diselenide (ReSe2), and organic 2D materials. Providing detailed synthesis protocols and characterization techniques for these various anisotropic 2D materials, readers will learn their specific technological scopes for next generation electronics, optoelectronics and biomedical applications, challenges and future directions. Edited by an leading expert, contributors cover enhanced many-body interactions and high binding energy 1D particle dynamics to showcase design of high-performance optoelectronic devices; anisotropic polariton for designing polariton based laser systems; applications in bio-imaging, cancer diagnosis and therapies, drug delivery and release, and antibacterial performance; and finally, their potential in nano-electro-mechanical devices. Considering all these areas in detail, this book is a useful reference to the scientific communities working in related research fields, especially for materials scientists, chemists, physicists and electronics/electrical/energy engineers. This book may also be of use to those in chemical academia and industry more broadly.

Book Halide Perovskites

Download or read book Halide Perovskites written by Tze-Chien Sum and published by John Wiley & Sons. This book was released on 2019-03-25 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.

Book 2D Semiconductor Materials and Devices

Download or read book 2D Semiconductor Materials and Devices written by Dongzhi Chi and published by Elsevier. This book was released on 2019-10-19 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2D Semiconductor Materials and Devices reviews the basic science and state-of-art technology of 2D semiconductor materials and devices. Chapters discuss the basic structure and properties of 2D semiconductor materials, including both elemental (silicene, phosphorene) and compound semiconductors (transition metal dichalcogenide), the current growth and characterization methods of these 2D materials, state-of-the-art devices, and current and potential applications. - Reviews a broad range of emerging 2D electronic materials beyond graphene, including silicene, phosphorene and compound semiconductors - Provides an in-depth review of material properties, growth and characterization aspects—topics that could enable applications - Features contributions from the leading experts in the field

Book The Physics of the Two Dimensional Electron Gas

Download or read book The Physics of the Two Dimensional Electron Gas written by J.T. Devreese and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1986 Advanced Study Institute on "The Physics of the two-Dimen sional Electron Gas" took place at the Conference Centre liTer Helme", close to Oostende (Belgium), from June 2 till 16, 1986. We were motivated to organize this Advanced Study Institute in view of the recent experimental and theoretical progress in the study of the two-dimensional electron gas. An additional motivation was our own theore tical interest in cyclotron resonance in two-dimensional electron systems at our institute. It is my pleasure to thank several instances and people who made this Advanced Study Institute possible. First of all, the sponsor of the Advanced Study Institute, the NATO Scientific Committee. Furthermore, the co sponsors: Agfa Gevaert, Bell Telephone Mfg. Co. N.V., Burroughs Belgium. Control Data. Digital Equipment Corporation, Esso Belgium. European Research Office (USA). Kredietbank. National Science Foundation (USA). Special thanks are due to the members of the Program Committee and the members of the Organizing Committee. I would also like to thank Mrs. H. Evans for typing assistance.

Book Exciton Dynamics in Lead Halide Perovskite Nanocrystals

Download or read book Exciton Dynamics in Lead Halide Perovskite Nanocrystals written by Bernhard Johann Bohn and published by Springer Nature. This book was released on 2021-05-18 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Less than a decade ago, lead halide perovskite semiconductors caused a sensation: Solar cells exhibiting astonishingly high levels of efficiency. Recently, it became possible to synthesize nanocrystals of this material as well. Interestingly; simply by controlling the size and shape of these crystals, new aspects of this material literally came to light. These nanocrystals have proven to be interesting candidates for light emission. In this thesis, the recombination, dephasing and diffusion of excitons in perovskite nanocrystals is investigated using time-resolved spectroscopy. All these dynamic processes have a direct impact on the light-emitting device performance from a technology point of view. However, most importantly, the insights gained from the measurements allowed the author to modify the nanocrystals such that they emitted with an unprecedented quantum yield in the blue spectral range, resulting in the successful implementation of this material as the active layer in an LED. This represents a technological breakthrough, because efficient perovskite light emitters in this wavelength range did not exist before.

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book Synthesis  Modelling and Characterization of 2D Materials and their Heterostructures

Download or read book Synthesis Modelling and Characterization of 2D Materials and their Heterostructures written by Eui-Hyeok Yang and published by Elsevier. This book was released on 2020-06-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. - Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales - Provides fundamental theoretical insights, example problems, sample code and exercise problems - Outlines major characterization and synthesis methods for different types of 2D materials

Book Nanoscale Materials for Warfare Agent Detection  Nanoscience for Security

Download or read book Nanoscale Materials for Warfare Agent Detection Nanoscience for Security written by Carla Bittencourt and published by Springer. This book was released on 2019-05-24 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a blueprint for researchers in the area of nanotechnology for chemical defense, especially with regard to future research on detection and protection. It addresses the synthesis of complex nanomaterials with potential applications in a broad range of sensing systems. Above all, it discusses novel experimental and theoretical tools for characterizing and modeling nanostructures and their integration in complex systems. The book also includes electronic structure calculations exploring the atomic and quantum mechanical mechanisms behind molecular binding and identification, so as to provide readers with an in-depth understanding of the capabilities and limitations of various nanomaterial approaches. Gathering contributions by scientists with diverse backgrounds, the book offers a wealth of insightful information for all scientists whose work involves material science and its applications in sensing.

Book Proceedings of the 17th International Conference on the Physics of Semiconductors

Download or read book Proceedings of the 17th International Conference on the Physics of Semiconductors written by J.D. Chadi and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 1580 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Proceedings of the 17th International Conference on the Physics of Semiconductors are contained in this volume. A record 1050 scientists from 40 countries participated in the Conference which was held in San Francisco August 6·1 0, 1984. The Conference was organized by the ICPS Committee and sponsored by the International Union of Pure and Applied Physics and other professional, government, and industrial organizations listed on the following pages. Papers representing progress in all aspects of semiconductor physics were presented. Far more abstracts (765) than could be presented in a five-day meeting were considered by the International Program Committee. A total of 350 papers, consisting of 5 plenary, 35 invited, and 310 contributed, were presented at the Conference in either oral or poster sessions. All but a few of the papers were submitted and have been included in these Proceedings. An interesting shift in subject matter, in comparison with earlier Conferences, is manifested by the large number of papers on surfaces, interfaces, and quantum wells. To facilitate the use of the Proceedings in finding closely related papers among the sometimes relatively large number of contributions within a main subject area, we chose not to arrange the papers strictly according to the Conference schedule. We have organized the book, as can be seen from the Contents, into specific subcategories and subdivisions within each major category. Plenary and invited papers have been placed together with the appropriate contributed papers.

Book Fundamentals of Condensed Matter Physics

Download or read book Fundamentals of Condensed Matter Physics written by Marvin L. Cohen and published by Cambridge University Press. This book was released on 2016-05-26 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on an established course and covering all the fundamentals, central areas and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. Coverage of concepts and techniques ensures that both theoretically and experimentally inclined students gain the strong understanding needed for research and teaching.

Book Bose Einstein Condensation

    Book Details:
  • Author : A. Griffin
  • Publisher : Cambridge University Press
  • Release : 1996-07-13
  • ISBN : 9780521589901
  • Pages : 622 pages

Download or read book Bose Einstein Condensation written by A. Griffin and published by Cambridge University Press. This book was released on 1996-07-13 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book devoted to Bose-Einstein condensation (BEC) as an interdisciplinary subject.

Book Frontiers in Optics and Photonics

Download or read book Frontiers in Optics and Photonics written by Federico Capasso and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-06-08 with total page 783 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a cutting-edge research overview on the latest developments in the field of Optics and Photonics. All chapters are authored by the pioneers in their field and will cover the developments in Quantum Photonics, Optical properties of 2D Materials, Optical Sensors, Organic Opto-electronics, Nanophotonics, Metamaterials, Plasmonics, Quantum Cascade lasers, LEDs, Biophotonics and biomedical photonics and spectroscopy.