EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quasiparticle Anisotropic Hydrodynamics in Ultra relativistic Heavy ion Collisions

Download or read book Quasiparticle Anisotropic Hydrodynamics in Ultra relativistic Heavy ion Collisions written by Mubarak Aydh K. Alqahtani and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last century, matter was confirmed to be made up from molecules which consist of two atoms or more. The atom itself consists of a nucleus made of protons and neutrons, and electrons "circling'' around the nucleus. The number of electrons or protons distinguish different elements. Later on, protons and neutrons were found not to be elementary particles but rather composite particles. The question turned then to be what are protons and neutrons made of and this is the focus of elementary particle physics. According to the standard model, protons and neutrons are made up of quarks and gluons. The theory that describes quarks and gluons is called quantum chromodynamics (QCD). According to this theory, quarks and gluons can not be detected freely; they appear only inside hadrons but are never observed freely (confinement). However, at high temperatures and/or densities a transition may happen where quarks and gluons do not exist in bound states (hadrons) anymore but rather exist freely (the asymptotic freedom). This phase of the nuclear matter is known as the quark-gluon plasma (QGP).To learn more about the QCD phase diagram, mainly the confinement and de-confinement transition, many different experiments have been performed from fixed target experiments to high-energy heavy-ion collisions in almost three decades. The discovery of QGP came from ultrarelativistic heavy-ion collision (URHIC) experiments. By ultrarelativistic heavy-ion collisions, we mean heavy ions like gold or lead that have been accelerated to speeds which are close to the speed of light (the ion momentum is much larger than its rest mass). Nowadays, ultrarelativistic heavy-ion collision experiments at the Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) are being used to create and study the quark-gluon plasma. From the early days after confirming the existence of the QGP, relativistic hydrodynamics has been used to describe the hadron spectra and collective flow seen in these experiments and has been quite successful. Since then, different approaches have been developed to model the physics of the QGP. The first approach used was ideal hydrodynamics where the QGP is assumed to behave like a perfect fluid with no viscosity. However, improvements in both the experimental and theoretical sides demonstrated the importance of including dissipative (viscous) effects in QGP modeling. The resulting relativistic viscous hydrodynamics models have been quite successful in describing the data. Despite this success, studies found that the QGP generated in URHICs is a highly momentum-space anisotropic plasma which means that viscous hydrodynamics will break down in some situations. To take this into account, anisotropic hydrodynamics (aHydro) was developed. In aHydro, one includes the momentum-space anisotropies in the distribution function at leading-order, whereas viscous hydrodynamics is expanded around the isotropic distribution function as the leading term and the viscous effects are included as correction terms. In this study, we present a new method for imposing a realistic equation of state in anisotropic hydrodynamics which is called quasiparticle anisotropic hydrodynamics (aHydroQP). In this method, we introduce a single finite-temperature quasiparticle mass which is fit to QCD lattice data. By taking moments of the Boltzmann equation assuming an anisotropic distribution function, we obtain a set of coupled partial differential equations which can be used to describe the 3+1d spacetime evolution of the QGP. Due to the numerical difficulties and the need to understand this new method more, instead of considering the 3+1d case immediately, we begin by studying two simpler cases. First, we specialize to the case of a 0+1d system undergoing boost-invariant Bjorken expansion and compare with the standard method of imposing the equation of state in anisotropic hydrodynamics (aHydro). We find practically no differences between the two methods results for the temperature evolution and the scaled energy density. When we compare the pressure anisotropy, we see only small differences, however, we find significant differences in the evolution of the bulk pressure correction. Second, we present the results in azimuthally-symmetric boost-invariant (1+1d) systems and compare the quasiparticle model with the standard aHydro model and second order viscous hydrodynamics. We compare the three methods' predictions for the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio. We show that they agree well for small shear viscosity to entropy density ratio, but show clear differences at large values of shear viscosity to entropy density ratio. Third, and most importantly, we present the phenomenological predictions of 3+1d quasiparticle anisotropic hydrodynamics compared with LHC 2.76 TeV Pb-Pb collisions. We present comparisons of charged-hadron multiplicity, identified-particle spectra, identified-particle average transverse momentum, charged-particle elliptic flow, identified-particle elliptic flow, elliptic flow as a function of pseudorapidity, and HBT radii. We find good agreement when compared with ALICE data. Looking to the future, we plan to include next-leading-order anisotropic hydrodynamics corrections by including the off-diagonal terms of the anisotropy tensor in quasiparticle anisotropic hydrodynamics. However, since this will be very hard and numerically intense, we consider first next-leading-order anisotropic hydrodynamics using the standard method for imposing the equation of state. To do so, we Taylor-expand assuming small off-diagonal terms to make the formalism easier and numerically tractable. Then, by taking moments of the Boltzmann equation, we find the dynamical equations needed to model the full 3+1d system. In this part of the work, we present only the theory setup and leave the numerical analysis for a future work.

Book Phenomenology of Ultra relativistic Heavy ion Collisions

Download or read book Phenomenology of Ultra relativistic Heavy ion Collisions written by and published by World Scientific. This book was released on 2010 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the main ideas used in the physics of ultra-realistic heavy-ion collisions, this book covers topics such as hot and dense matter and the formation of the quark-gluon plasma in present and future heavy-ion experiments

Book Hydrodynamics of Ultra relativistic Heavy ion Collisions

Download or read book Hydrodynamics of Ultra relativistic Heavy ion Collisions written by Ming-chung Chu and published by . This book was released on 1987 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Relativistic Fluid Dynamics In and Out of Equilibrium

Download or read book Relativistic Fluid Dynamics In and Out of Equilibrium written by Paul Romatschke and published by Cambridge University Press. This book was released on 2019-05-09 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen unprecedented developments in the understanding of relativistic fluid dynamics in and out of equilibrium, with connections to astrophysics, cosmology, string theory, quantum information, nuclear physics and condensed matter physics. Romatschke and Romatschke offer a powerful new framework for fluid dynamics, exploring its connections to kinetic theory, gauge/gravity duality and thermal quantum field theory. Numerical algorithms to solve the equations of motion of relativistic dissipative fluid dynamics as well as applications to various systems are discussed. In particular, the book contains a comprehensive review of the theory background necessary to apply fluid dynamics to simulate relativistic nuclear collisions, including comparisons of fluid simulation results to experimental data for relativistic lead-lead, proton-lead and proton-proton collisions at the Large Hadron Collider (LHC). The book is an excellent resource for students and researchers working in nuclear physics, astrophysics, cosmology, quantum many-body systems and string theory.

Book Ultrarelativistic Heavy Ion Collisions

Download or read book Ultrarelativistic Heavy Ion Collisions written by Ramona Vogt and published by Elsevier. This book was released on 2007-06-04 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed for advanced undergraduate and graduate students in high energy heavy-ion physics. It is relevant for students who will work on topics being explored at RHIC and the LHC. In the first part, the basic principles of these studies are covered including kinematics, cross sections (including the quark model and parton distribution functions), the geometry of nuclear collisions, thermodynamics, hydrodynamics and relevant aspects of lattice gauge theory at finite temperature. The second part covers some more specific probes of heavy-ion collisions at these energies: high mass thermal dileptons, quarkonium and hadronization. The second part also serves as extended examples of concepts learned in the previous part. Both parts contain examples in the text as well as exercises at the end of each chapter. - Designed for students and newcomers to the field- Focuses on hard probes and QCD- Covers all aspects of high energy heavy-ion physics- Includes worked example problems and exercises

Book Far from equilibrium Hydrodynamic Simulations of Ultrarelativistic Nuclear Collisions

Download or read book Far from equilibrium Hydrodynamic Simulations of Ultrarelativistic Nuclear Collisions written by Michael J. McNelis and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: We develop a far-from-equilibrium hydrodynamic model to evolve ultrarelativistic heavy-ion collisions in event-by-event simulations. Anisotropic hydrodynamics is designed to better handle the strong and highly anisotropic expansion during the early stages of the collision. The large gradients cause conventional second-order viscous hydrodynamic approaches to break down at early times. Anisotropic hydrodynamics evolves the large pressure anisotropies present in the quark-gluon plasma non-perturbatively, which prevents negative longitudinal pressures from developing even under extreme conditions. This increased stability allows us to start anisotropic hydrodynamics already at a very early longitudinal proper time to evolve the pre-hydrodynamic stage. In current pre-hydrodynamic models, the equation of state is not consistent with the QCD equation of state used in the subsequent fluid dynamic stage. Since our approach avoids this inconsistency, we are able to achieve a smooth transition to non-conformal viscous hydrodynamics as the gradients decrease over time. For our first phenomenological application, we apply our new simulation to model fluctuating Pb+Pb collisions at LHC energies and find that our preliminary calculations for the hadronic observables are in excellent agreement with the experimental data.

Book Introduction to Relativistic Heavy Ion Collisions

Download or read book Introduction to Relativistic Heavy Ion Collisions written by L. P. Csernai and published by . This book was released on 1994-05-10 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Relativistic Heavy Ion Collisions László P. Csernai University of Bergen, Norway Written for postgraduates and advanced undergraduates in physics, this clear and concise work covers a wide range of subjects from intermediate to ultra-relativistic energies, thus providing an introductory overview of heavy ion physics. The reader is introduced to essential principles in heavy ion physics through a variety of questions, with answers, of varying difficulty. This timely text is based on a series of well received lectures given by Professor L. Csernai at the University of Minnesota, and the University of Bergen, where the author is based.

Book Anisotropie in Ultra relativistische Zware ionenbotsingen

Download or read book Anisotropie in Ultra relativistische Zware ionenbotsingen written by Willem Hendrik van Heeringen and published by . This book was released on 1996 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Physics of Ultra Relativistic Heavy Ion Collisions

Download or read book The Physics of Ultra Relativistic Heavy Ion Collisions written by H. R. Schmidt and published by . This book was released on 1992 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Relativistic Heavy Ion Physics

Download or read book Relativistic Heavy Ion Physics written by László P. Csernai and published by World Scientific. This book was released on 1991 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1987 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Final Report for Project   Theory of Ultra relativistic Heavy ion Collisions

Download or read book Final Report for Project Theory of Ultra relativistic Heavy ion Collisions written by and published by . This book was released on 2012 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the course of this project the Ohio State University group led by the PI, Professor Ulrich Heinz, developed a comprehensive theoretical picture of the dynamical evolution of ultra-relativistic heavy-ion collisions and of the numerous experimental observables that can be used to diagnose the evolving and short-lived hot and dense fireball created in such collisions. Starting from a qualitative understanding of the main features based on earlier research during the last decade of the twentieth century on collisions at lower energies, the group exploited newly developed theoretical tools and the stream of new high-quality data from the Relativistic Heavy Ion Collider at Brookhaven National Laboratory (which started operations in the summer of the year 2000) to arrive at an increasingly quantitative description of the experimentally observed phenomena. Work done at Ohio State University (OSU) was instrumental in the discovery during the years 2001-2003 that quark-gluon plasma (QGP) created in nuclear collisions at RHIC behaves like an almost perfect liquid with minimal viscosity. The tool of relativistic fluid dynamics for viscous liquids developed at OSU in the years 2005-2007 opened the possibility to quantitatively determine the value of the QGP viscosity empirically from experimental measurements of the collective flow patterns established in the collisions. A first quantitative extraction of the QGP shear viscosity, with controlled theoretical uncertainty estimates, was achieved during the last year of this project in 2010. OSU has paved the way for a transition of the field of relativistic heavy-ion physics from a qualitative discovery stage to a new stage of quantitative precision in the description of quark-gluon plasma properties. To gain confidence in the precision of our theoretical understanding of quark-gluon plasma dynamics, one must test it on a large set of experimentally measured observables. This achievement report demonstrates that we have, at different times, systematically investigated both so-called ``soft" and ``hard, penetrating" probes of the fireball medium: hadron yields and momentum spectra and their anisotropies, two-particle momentum correlations, high-energy partons fragmenting into jets, heavy quarks and heavy-flavor mesons, and electromagnetic probes (photons and dileptons). Our strongest emphasis, and our most significant achievements, has, however, always remained on understanding the bulk behavior of the heavy-ion fireball medium, for which soft probes provide the most abundantly available data and thus the most stringent constraints.

Book Strangeness Production in Ultrarelativistic Heavy ion Collisions

Download or read book Strangeness Production in Ultrarelativistic Heavy ion Collisions written by Tetsuo Matsui and published by . This book was released on 1986 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Relativistic Heavy Ion Physics

Download or read book Introduction to Relativistic Heavy Ion Physics written by Jerzy Bartke and published by World Scientific. This book was released on 2009 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book attempts to cover the fascinating field of physics of relativistic heavy ions, mainly from the experimentalist's point of view. After the introductory chapter on quantum chromodynamics, basic properties of atomic nuclei, sources of relativistic nuclei, and typical detector set-ups are described in three subsequent chapters. Experimental facts on collisions of relativistic heavy ions are systematically presented in 15 consecutive chapters, starting from the simplest features like cross sections, multiplicities, and spectra of secondary particles and going to more involved characteristics like correlations, various relatively rare processes, and newly discovered features: collective flow, high pT suppression and jet quenching. Some entirely new topics are included, such as the difference between neutron and proton radii in nuclei, heavy hypernuclei, and electromagnetic effects on secondary particle spectra.Phenomenological approaches and related simple models are discussed in parallel with the presentation of experimental data. Near the end of the book, recent ideas about the new state of matter created in collisions of ultrarelativistic nuclei are discussed. In the final chapter, some predictions are given for nuclear collisions in the Large Hadron Collider (LHC), now in construction at the site of the European Organization for Nuclear Research (CERN), Geneva. Finally, the appendix gives us basic notions of relativistic kinematics, and lists the main international conferences related to this field. A concise reference book on physics of relativistic heavy ions, it shows the present status of this field.

Book Experimental Studies of Particle Production in Ultra relativistic Heavy Ion Collisions

Download or read book Experimental Studies of Particle Production in Ultra relativistic Heavy Ion Collisions written by Pål Nilsson and published by . This book was released on 2001 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding the Origin of Matter

Download or read book Understanding the Origin of Matter written by David Blaschke and published by Springer Nature. This book was released on 2022-09-14 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at providing a solid basis for the education of the next generation of researchers in hot, dense QCD (Quantum ChromoDynamics) matter. This is a rapidly growing field at the interface of the smallest, i.e. subnuclear physics, and the largest scales, namely astrophysics and cosmology. The extensive lectures presented here are based on the material used at the training school of the European COST action THOR (Theory of hot matter in relativistic heavy-ion collisions). The book is divided in three parts covering ultrarelativistic heavy-ion collisions, several aspects related to QCD, and simulations of QCD and heavy-ion collisions. The scientific tools and methods discussed provide graduate students with the necessary skills to understand the structure of matter under extreme conditions of high densities, temperatures, and strong fields in the collapse of massive stars or a few microseconds after the big bang. In addition to the theory, the set of lectures presents hands-on material that includes an introduction to simulation programs for heavy-ion collisions, equations of state, and transport properties.

Book Relativistic Heavy ion Collisions

Download or read book Relativistic Heavy ion Collisions written by Rudolph C. Hwa and published by CRC Press. This book was released on 1990 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers of the June 1989 meeting in Beijing by the China Center of Advanced Science and Technology. This small book covers nucleus- nucleus collisions, states of the vacuum, and highly relativistic heavy ions in the experimental realm. Theoretical papers deal with quark-gluon plasma, and relativistic heavy ion collisions. Annotation copyrighted by Book News, Inc., Portland, OR