EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantum Transport in Two dimensional Topological Systems

Download or read book Quantum Transport in Two dimensional Topological Systems written by Jianxiao Zhang and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery of topological states of matters has sparked intense interests amongresearchers in the past decade. Topologically non-trivial band structure in thesequantum states can give rise to a variety of topological phenomena, the experimentaldemonstration of which can have a huge impact on our understandingof fundamental states of matter. Transport measurement is one of the majorexperimental techniques to probe these topological phenomena. This dissertationis devoted to theoretical and numerical studies of quantum transport phenomenain a variety of topological materials, including magnetic topological insulator films,the quantum anomalous Hall insulator/superconductor hetero-structures, the kinkstates in bilayer graphene and the photonic crystal of topological mirror insulatorphase in the optical regime. The numerical simulations of transport phenomenaand the analytical understanding of the underlying physical mechanism in thisdissertation will provide guidance for the future transport measurements.The numerical methods to simulate quantum transport in this dissertation arebased on Landauer-Bttiker formalism and Greens function method, which willbe introduced in Chapter 2. The transmission through certain sample regionscan be extracted from the Greens function method and serves as the input forthe Landauer-Bttiker formalism to compute conductance tensor that is directlymeasured in transport experiments. Physical understanding of the transportmechanism can be provided by analyzing different components of the transmissionmatrix, in combination with other analytical methods for transport phenomena.Defects and impurities can be incorporated in numerical simulations by includingrandom potentials into the model Hamiltonian, and thus this method can be appliedin different transport regimes, from ballistic to diffusive transport.Chapter 3 to 5 of the dissertation is to apply the above numerical methodsto three different topological mesoscopic systems: magnetic topological insulator(MTI) films, quantum anomalous Hall insulator (QAHI) - superconductor (SC)junctions, and bilayer graphene devices.Chapter 3 is dedicated to the study of quantum transport through magnetictextures in a thin film of MTI. We focus on both the longitudinal and Hall transports,which reveal complicated features due to the coexistence of strong spin-orbit couplingfrom TI materials and magnetic non-colinearity from magnetic textures in thissystem. The manifested Hall transport can be induced by different topologicalmechanisms, including the intrinsic anomalous Hall effect from strong SOC and thetopological Hall effect (or known as geometric Hall effect) from magnetic textures.Thus, this system provides a nice platform to understand the interplay betweenspin-orbit coupling and real-space magnetic texture, as well as disorder scatterings.Our numerical simulations have shown different roles of spin-orbit coupling in theclean and disordered limits for this system. In the clean limit when SOC strengthis increased, the topological Hall conductance (THC) almost remains constant butthe topological Hall resistance (THR) can increase by an order of magnitude dueto the reduction of longitudinal conductance, caused by SOC-induced spin flips.However, in the disordered limit, both the THC and THR increase with increasingSOC, while longitudinal conductance is not influenced much by SOC.In Chapter 4, we study the transport of chiral edge channels in a QAHI/superconductorjunction. This type of hetero-junction has been recently fabricated andmeasured in experiments, in pursue of topological superconductivity and Majoranafermions. We focus on the disorder effect in the weak superconductor proximitylimit. Our results show that the quantized valued of conductance remains robustfor a single chiral edge channel even in the presence of disorder in the zero-biaslimit. However, such quantization is broken down for a finite bias, or for multiplechiral edge modes, or for the coexistence of a single chiral edge mode with othertrivial metallic modes, when disorders are present. Our theory provides guidanceto understand transport phenomena in these systems for future experiments.Chapter 5 is a simulation of transport behaviors through the so-called kinkstates in a bilayer graphene device under external electric and magnetic fields. Thedevice, known as a valley valve and electron beam splitter, has been fabricatedby our experimental collaborators and its unusual transport properties have beenmeasured experimentally. Our numerical simulations provide a justification of theguiding center physical picture for topological transport through this device.Chapter 6 goes beyond electronic systems and concerns topological phase inphotonic systems. We utilize a method of dynamic evolution of states to studya topological crystalline insulator phase in a photonic system. The crystallineprotection, achieved by the fine manufacturing of emulated atoms in a photoniclattice, selectively pumps incident states with a certain parity while reflects theother.The studies in the dissertation are in close collaboration with experimentalgroups, including Prof. Moses Chans and Prof. Cui-zu Changs group for the transportmeasurements in MTI films and QAHI/SC junctions, Prof. Jun Zhus groupfor the experiments on the bilayer graphene device, and Prof. Mikael Rechtsmansgroup for the photonic topological systems.

Book Quantum Transport in 2 and 3 Dimensional Topological Insulators

Download or read book Quantum Transport in 2 and 3 Dimensional Topological Insulators written by Di Xiao and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological insulators are materials that are insulating in the bulk but that conduct via topologically protected states on the boundary. The concept of topology in condensed matter physics was first introduced to explain the integer quantum Hall (IQH) effect. The perfect quantization of these topologically protected edge states, insensitive to sample geometry and disorder, stimulated an extensive search for many exciting new topological materials. One of the milestones along the journey was the theoretical prediction and experimental discovery of Z2 topological insulators.The first class of Z2 topological insulators discovered was the 2-dimensional topological insulator (2D TI), also known as the quantum spin Hall (QSH) insulator. The 2D TI can be viewed as a variation of the IQH system but with time-reversal-symmetry (TRS). The topological invariant for a 2D TI is the Z2 number, defined by its nontrivial band structure instead of the Chern number in the IQH case. Generalizing this idea to 3 dimensions led to the discovery of the 3D TI with four Z2 invariants. Both the 2D and 3D TIs are of interest as model platforms for testing theoretical problems of fundamental interest. For instance, they allow us to realize artificial condensed matter analogs of fundamental particles such as Majorana fermions and axions that have yet to be observed in nature. They are also of interest for potential technological applications, principally spintronics and quantum computing.This dissertation focuses on the synthesis, characterization, and transport properties of both 2D and 3D TIs. We first discuss the 2D TI candidate material system, type II InAs/GaSb quantum wells, which exhibits a rich topological phase diagram that can be tuned by several parameters such as sample geometry or electrostatic gating. By changing the thicknesses of relevant layers, we are able to enter a new insulating regime where unexpected high-density quantum oscillations are observed. We elucidate this phenomenon through theoretical calculation and through control experiments. The seemingly controversial coexistence of high density states and the insulating regime can be explained by the effect of the attractive Coulomb interaction, which was not considered in earlier theories.The second topic we address is quantum transport in 3D TI systems. Breaking the TRS of the 3D TI surface states leads to many exotic phenomena, including the quantum anomalous Hall (QAH) effect and the axion insulator state. By constructing a sandwich heterostructure that has different magnetic coercive fields in the top and bottom magnetic layers, while keeping the center layer free from magnetic impurities, both the QAH and the axion insulator state can be observed in low-temperature transport measurements, when the magnetization alignment of the top and bottom layers is parallel and antiparallel, respectively. We also discuss the scaling behavior of the topological quantum phase transition between these two states.

Book Topological Insulators

    Book Details:
  • Author : Gregory Tkachov
  • Publisher : CRC Press
  • Release : 2015-10-14
  • ISBN : 9814613266
  • Pages : 180 pages

Download or read book Topological Insulators written by Gregory Tkachov and published by CRC Press. This book was released on 2015-10-14 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of dynamic developments that have occurred in condensed matter physics after the recent discovery of a new class of electronic materials: topological insulators. A topological insulator is a material that behaves as a band insulator in its interior, while acting as a metallic conductor at its surface. The surface current car

Book Quantum Transport in Two dimensional Graphite System

Download or read book Quantum Transport in Two dimensional Graphite System written by Nguyen Hong Shon and published by . This book was released on 1998 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Transport in 2D Topological Insulator Device

Download or read book Quantum Transport in 2D Topological Insulator Device written by 李欣翰 and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Transport in Interacting Two dimensional Systems

Download or read book Quantum Transport in Interacting Two dimensional Systems written by Volkmar Senz and published by . This book was released on 2002 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topological Insulators and Topological Superconductors

Download or read book Topological Insulators and Topological Superconductors written by B. Andrei Bernevig and published by Princeton University Press. This book was released on 2013-04-07 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Book Quantum Transport in Two Dimensional Hole Systems

Download or read book Quantum Transport in Two Dimensional Hole Systems written by Peter James Rodgers and published by . This book was released on 1994 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spin Current

    Book Details:
  • Author : Sadamichi Maekawa
  • Publisher : Oxford University Press
  • Release : 2017
  • ISBN : 0198787073
  • Pages : 541 pages

Download or read book Spin Current written by Sadamichi Maekawa and published by Oxford University Press. This book was released on 2017 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Book Quantum Transport of Two species Dirac Fermions in Dual gated Three dimensional Topological Insulators

Download or read book Quantum Transport of Two species Dirac Fermions in Dual gated Three dimensional Topological Insulators written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at the double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.

Book A Short Course on Topological Insulators

Download or read book A Short Course on Topological Insulators written by János K. Asbóth and published by Springer. This book was released on 2016-02-22 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

Book Introduction to Graphene Based Nanomaterials

Download or read book Introduction to Graphene Based Nanomaterials written by Luis E. F. Foa Torres and published by Cambridge University Press. This book was released on 2014-01-23 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed primer describing the most effective theoretical and computational methods and tools for simulating graphene-based systems.

Book Quantum Transport Properties in Two dimensional and Low Dimensional Systems

Download or read book Quantum Transport Properties in Two dimensional and Low Dimensional Systems written by Hao Fang and published by . This book was released on 1991 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nonequilibrium Quantum Transport Theory Of Spinful And Topological Systems  A New Perspective And Foundation For Topotronics

Download or read book Nonequilibrium Quantum Transport Theory Of Spinful And Topological Systems A New Perspective And Foundation For Topotronics written by Felix A Buot and published by World Scientific. This book was released on 2024-04-23 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book employs nonequilibrium quantum transport, based on the use of mixed Hilbert space representations and real time quantum superfield transport theory, to explain various topological phases of systems with entangled chiral degrees of freedom. It presents an entirely new perspective on topological systems, entanglement-induced localization and delocalization, integer quantum Hall effect (IQHE), fractional quantum Hall effect (FQHE), and its respective spectral zones in the Hofstadter butterfly spectrum. A simple and powerful, intuitive, and wide-ranging perspective on chiral transport dynamics.

Book QUANTUM TRANSPORT IN TOPOLOGICAL MATERIALS

Download or read book QUANTUM TRANSPORT IN TOPOLOGICAL MATERIALS written by Run Xiao and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation focuses on the synthesis, characterization, fabrication, and electrical transport measurements of topological materials, including magnetically doped topological insulators and Dirac semimetal Cd3As2. Bismuth-chalcogenide topological insulators have time-reversal-symmetry-protected surface states due to the strong spin-orbit coupling. Breaking the time-reversal symmetry by magnetic dopants can lead to fascinating exotic phenomena, such as the quantum anomalous Hall effect. On the other hand, Dirac semimetals host three-dimensional Dirac fermions and can be identified as a parent phase of other topological phases, such as Weyl semimetals. In this dissertation, quantum transport measurements are performed on thin films of topological materials to investigate and understand the unusual electronic states that host these topological phases. These studies can motivate and facilitate the development of potential applications of topological materials, especially in spintronics and quantum computing. The first topological material studied in this dissertation is a magnetically doped topological insulator system: Cr doped (Bi,Sb)2Te3 - (Bi,Sb)2Te3 - Cr doped (Bi,Sb)2Te3 sandwich heterostructure. By tuning the chemical and asymmetric potentials using dual gates, both the quantum anomalous hall effect, due to the topology in the momentum space, and the topological Hall effect, due to the topology in real space, can be observed in this heterostructure system. We also mapped out a phase diagram of the topological Hall and quantum anomalous Hall effects as a function of the chemical and asymmetry potentials, paving a way to understand and manipulate the chiral magnetic spin textures in real space. The second topological material is Dirac semimetal Cd3As2. We investigated the integer quantum Hall effect in Cd3As2 thin films under strong to moderate quantum confinement (thicknesses of 10 nm, 12 nm, and 15 nm). In all the films, we observed the integer quantum Hall effect in the spin-polarized lowest Landau level (filling factor [nu]=1) and at spin-degenerate higher index Landau levels with even filling factors ([nu]=2,4,6). We also observed the lifting of the Landau level spin degeneracy at v=3 with strong quantum confinement. A tight-binding calculation suggests that the enhanced g-factor due to the quantum confinement and corrections from nearby subbands can be the reason for the emergence of v=3 quantum Hall plateau. Last, we explored the introduction of the transition metal Mn into Cd3As2 thin films to break the time-reversal symmetry. Scanning transmission electron microscopy of these films shows a formation of an Mn-rich layer on top of a pure Cd3As2 layer using both uniform and delta doping methods. The low solubility of Mn in Cd3As2 can be the reason for the phase separation. The Mn-rich region shows out-of-plane magnetic anisotropy in superconducting quantum interference device magnetometry measurements. Moreover, the presence of the Mn surfactant lowers the carrier density in the Cd3As2 layer, and an incipient quantum Hall effect can be observed in low-temperature transport measurements.

Book Dirac Matter

    Book Details:
  • Author : Bertrand Duplantier
  • Publisher : Birkhäuser
  • Release : 2017-01-25
  • ISBN : 3319325361
  • Pages : 139 pages

Download or read book Dirac Matter written by Bertrand Duplantier and published by Birkhäuser. This book was released on 2017-01-25 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fifteenth volume of the Poincare Seminar Series, Dirac Matter, describes the surprising resurgence, as a low-energy effective theory of conducting electrons in many condensed matter systems, including graphene and topological insulators, of the famous equation originally invented by P.A.M. Dirac for relativistic quantum mechanics. In five highly pedagogical articles, as befits their origin in lectures to a broad scientific audience, this book explains why Dirac matters. Highlights include the detailed "Graphene and Relativistic Quantum Physics", written by the experimental pioneer, Philip Kim, and devoted to graphene, a form of carbon crystallized in a two-dimensional hexagonal lattice, from its discovery in 2004-2005 by the future Nobel prize winners Kostya Novoselov and Andre Geim to the so-called relativistic quantum Hall effect; the review entitled "Dirac Fermions in Condensed Matter and Beyond", written by two prominent theoreticians, Mark Goerbig and Gilles Montambaux, who consider many other materials than graphene, collectively known as "Dirac matter", and offer a thorough description of the merging transition of Dirac cones that occurs in the energy spectrum, in various experiments involving stretching of the microscopic hexagonal lattice; the third contribution, entitled "Quantum Transport in Graphene: Impurity Scattering as a Probe of the Dirac Spectrum", given by Hélène Bouchiat, a leading experimentalist in mesoscopic physics, with Sophie Guéron and Chuan Li, shows how measuring electrical transport, in particular magneto-transport in real graphene devices - contaminated by impurities and hence exhibiting a diffusive regime - allows one to deeply probe the Dirac nature of electrons. The last two contributions focus on topological insulators; in the authoritative "Experimental Signatures of Topological Insulators", Laurent Lévy reviews recent experimental progress in the physics of mercury-telluride samples under strain, which demonstrates that the surface of a three-dimensional topological insulator hosts a two-dimensional massless Dirac metal; the illuminating final contribution by David Carpentier, entitled "Topology of Bands in Solids: From Insulators to Dirac Matter", provides a geometric description of Bloch wave functions in terms of Berry phases and parallel transport, and of their topological classification in terms of invariants such as Chern numbers, and ends with a perspective on three-dimensional semi-metals as described by the Weyl equation. This book will be of broad general interest to physicists, mathematicians, and historians of science.

Book Topology in Condensed Matter

    Book Details:
  • Author : Michael I. Monastyrsky
  • Publisher : Springer Science & Business Media
  • Release : 2006-02-04
  • ISBN : 3540312641
  • Pages : 263 pages

Download or read book Topology in Condensed Matter written by Michael I. Monastyrsky and published by Springer Science & Business Media. This book was released on 2006-02-04 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.