EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Quantum Transport in Semiconductors

Download or read book An Introduction to Quantum Transport in Semiconductors written by David K. Ferry and published by CRC Press. This book was released on 2017-12-14 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Throughout their college career, most engineering students have done problems and studies that are basically situated in the classical world. Some may have taken quantum mechanics as their chosen field of study. This book moves beyond the basics to highlight the full quantum mechanical nature of the transport of carriers through nanoelectronic structures. The book is unique in that addresses quantum transport only in the materials that are of interest to microelectronics—semiconductors, with their variable densities and effective masses. The author develops Green’s functions starting from equilibrium Green’s functions and going through modern time-dependent approaches to non-equilibrium Green’s functions, introduces relativistic bands for graphene and topological insulators and discusses the quantum transport changes that these bands induce, and discusses applications such as weak localization and phase breaking processes, resonant tunneling diodes, single-electron tunneling, and entanglement. Furthermore, he also explains modern ensemble Monte Carlo approaches to simulation of various approaches to quantum transport and the hydrodynamic approaches to quantum transport. All in all, the book describes all approaches to quantum transport in semiconductors, thus becoming an essential textbook for advanced graduate students in electrical engineering or physics.

Book Quantum Transport in Semiconductors

Download or read book Quantum Transport in Semiconductors written by David K. Ferry and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of the chapters in this volume represent a series of lectures. that were given at a workshop on quantum transport in ultrasmall electron devices, held at San Miniato, Italy, in March 1987. These have, of course, been extended and updated during the period that has elapsed since the workshop was held, and have been supplemented with additional chapters devoted to the tunneling process in semiconductor quantum-well structures. The aim of this work is to review and present the current understanding in nonequilibrium quantum transport appropriate to semiconductors. Gen erally, the field of interest can be categorized as that appropriate to inhomogeneous transport in strong applied fields. These fields are most likely to be strongly varying in both space and time. Most of the literature on quantum transport in semiconductors (or in metallic systems, for that matter) is restricted to the equilibrium approach, in which spectral densities are maintained as semiclassical energy conserving delta functions, or perhaps incorporating some form of collision broadening through a Lorentzian shape, and the distribution functions are kept in the equilibrium Fermi-Dirac form. The most familiar field of nonequilibrium transport, at least for the semiconductor world, is that of hot carriers in semiconductors.

Book Theory of Electron Transport in Semiconductors

Download or read book Theory of Electron Transport in Semiconductors written by Carlo Jacoboni and published by Springer Science & Business Media. This book was released on 2010-09-05 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book originated out of a desire to provide students with an instrument which might lead them from knowledge of elementary classical and quantum physics to moderntheoreticaltechniques for the analysisof electrontransport in semiconductors. The book is basically a textbook for students of physics, material science, and electronics. Rather than a monograph on detailed advanced research in a speci?c area, it intends to introduce the reader to the fascinating ?eld of electron dynamics in semiconductors, a ?eld that, through its applications to electronics, greatly contributed to the transformationof all our lives in the second half of the twentieth century, and continues to provide surprises and new challenges. The ?eld is so extensive that it has been necessary to leave aside many subjects, while others could be dealt with only in terms of their basic principles. The book is divided into ?ve major parts. Part I moves from a survey of the fundamentals of classical and quantum physics to a brief review of basic semiconductor physics. Its purpose is to establish a common platform of language and symbols, and to make the entire treatment, as far as pos- ble, self-contained. Parts II and III, respectively, develop transport theory in bulk semiconductors in semiclassical and quantum frames. Part IV is devoted to semiconductor structures, including devices and mesoscopic coherent s- tems. Finally, Part V develops the basic theoretical tools of transport theory within the modern nonequilibrium Green-function formulation, starting from an introduction to second-quantization formalism.

Book Quantum Kinetics in Transport and Optics of Semiconductors

Download or read book Quantum Kinetics in Transport and Optics of Semiconductors written by Hartmut Haug and published by Springer Science & Business Media. This book was released on 2007-12-10 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: The state-of-the-art of quantum transport and quantum kinetics in semiconductors, plus the latest applications, are covered in this monograph. Since the publishing of the first edition in 1996, the nonequilibrium Green function technique has been applied to a large number of new research topics, and the revised edition introduces the reader to many of these areas. This book is both a reference work for researchers and a self-tutorial for graduate students.

Book Advanced Physics of Electron Transport in Semiconductors and Nanostructures

Download or read book Advanced Physics of Electron Transport in Semiconductors and Nanostructures written by Massimo V. Fischetti and published by Springer. This book was released on 2016-05-20 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Book Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Download or read book Electronic Quantum Transport in Mesoscopic Semiconductor Structures written by Thomas Ihn and published by Springer. This book was released on 2004-09-09 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.

Book Quantum Transport

Download or read book Quantum Transport written by Supriyo Datta and published by Cambridge University Press. This book was released on 2005-06-16 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.

Book Physics of Hot Electron Transport in Semiconductors

Download or read book Physics of Hot Electron Transport in Semiconductors written by Chin Sen Ting and published by World Scientific. This book was released on 1992 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This review volume is based primarily on the balance equation approach developed since 1984. It provides a simple and analytical description about hot electron transport, particularly, in semiconductors with higher carrier density where the carrier-carrier collision is much stronger than the single particle scattering. The steady state and time-dependent hot electron transport, thermal noise, hot phonon effect, the memory effect, and other related subjects of charge carriers under strong electric fields are reviewed. The application of Zubarev's nonequilibrium statistical operator to hot electron transport and its equivalence to the balance equation method are also presented. For semiconductors with very low carrier density, the problem can be regarded as a single carrier transport which will be treated non-perturbatively by the nonequilibrium Green's function technique and the path integral theory. The last part of this book consists of a chapter on the dynamic conductivity and the shot noise suppression of a double-carrier resonant tunneling system.

Book Electron Transport Phenomena in Semiconductors

Download or read book Electron Transport Phenomena in Semiconductors written by B. M. Askerov and published by World Scientific. This book was released on 1994 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the first systematic and detailed exposition of the linear theory of the stationary electron transport phenomena in semiconductors. Arbitrary isotropic and anisotropic nonparabolic bands as well as p-Ge-type bands are considered. Phonon drag effect are taken account of in an arbitrary nonquantizing magnetic field. Scattering theory is discussed in detail with account taken of the Bloch wave functions effect. Transport phenomena in the quantizing magnetic field are studied as well as the size effects in thin films. Band structures of the semiconductors and semiconductor compounds of interest are also considered.The main part of the book deals with the three important problems: charge carrier statistics in a semiconductor, classical and quantum theory of the electron transport phenomena. All the theoretical results considered as well as the validity conditions are presented in the form which may be directly used to interpret experimental data.

Book Theory of Transport Properties of Semiconductor Nanostructures

Download or read book Theory of Transport Properties of Semiconductor Nanostructures written by Eckehard Schöll and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in the fabrication of semiconductors have created almost un limited possibilities to design structures on a nanometre scale with extraordinary electronic and optoelectronic properties. The theoretical understanding of elec trical transport in such nanostructures is of utmost importance for future device applications. This represents a challenging issue of today's basic research since it requires advanced theoretical techniques to cope with the quantum limit of charge transport, ultrafast carrier dynamics and strongly nonlinear high-field ef fects. This book, which appears in the electronic materials series, presents an over view of the theoretical background and recent developments in the theory of electrical transport in semiconductor nanostructures. It contains 11 chapters which are written by experts in their fields. Starting with a tutorial introduction to the subject in Chapter 1, it proceeds to present different approaches to transport theory. The semiclassical Boltzmann transport equation is in the centre of the next three chapters. Hydrodynamic moment equations (Chapter 2), Monte Carlo techniques (Chapter 3) and the cellular au tomaton approach (Chapter 4) are introduced and illustrated with applications to nanometre structures and device simulation. A full quantum-transport theory covering the Kubo formalism and nonequilibrium Green's functions (Chapter 5) as well as the density matrix theory (Chapter 6) is then presented.

Book Semiconductor Nanostructures

Download or read book Semiconductor Nanostructures written by Thomas Ihn and published by Oxford University Press. This book was released on 2010 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the physics of semiconductor nanostructures and their transport properties emphasizes five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect and the Coulomb blockade effect.

Book Physics of Nonlinear Transport in Semiconductors

Download or read book Physics of Nonlinear Transport in Semiconductors written by David K. Ferry and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: The area of high field transport in semiconductors has been of interest since the early studies of dielectric breakdown in various materials. It really emerged as a sub-discipline of semiconductor physics in the early 1960's, following the discovery of substantial deviations from Ohm's law at high electric fields. Since that time, it has become a major area of importance in solid state electronics as semiconductor devices have operated at higher frequencies and higher powers. It has become apparent since the Modena Conference on Hot Electrons in 1973, that the area of hot electrons has ex tended weIl beyond the concept of semi-classical electrons (or holes) in homogeneous semiconductor materials. This was exemplified by the broad range of papers presented at the International Conference on Hot Electrons in Semiconductors, held in Denton, Texas, in 1977. Hot electron physics has progressed from a limited phenomeno logical science to a full-fledged experimental and precision theo retical science. The conceptual base and subsequent applications have been widened and underpinned by the development of ab initio nonlinear quantum transport theory which complements and identifies the limitations of the traditional semi-classical Boltzmann-Bloch picture. Such diverse areas as large polarons, pico-second laser excitation, quantum magneto-transport, sub-three dimensional systems, and of course device dynamics all have been shown to be strongly interactive with more classical hot electron pictures.

Book Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Download or read book Electronic Quantum Transport in Mesoscopic Semiconductor Structures written by Thomas Ihn and published by Springer Science & Business Media. This book was released on 2004-01-08 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.

Book Transport Equations for Semiconductors

Download or read book Transport Equations for Semiconductors written by Ansgar Jüngel and published by Springer Science & Business Media. This book was released on 2009-03-17 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a systematic and mathematically accurate description and derivation of transport equations in solid state physics, in particular semiconductor devices.

Book Quantum Transport in Semiconductor Nanostructures

Download or read book Quantum Transport in Semiconductor Nanostructures written by Tillmann Christoph Kubis and published by . This book was released on 2009 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Semiconductor Spintronics and Quantum Computation

Download or read book Semiconductor Spintronics and Quantum Computation written by D.D. Awschalom and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.

Book Semiconductor Optics and Transport Phenomena

Download or read book Semiconductor Optics and Transport Phenomena written by Wilfried Schäfer and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well-balanced and up-to-date introduction to the field of semiconductor optics, including transport phenomena in semiconductors. Starting with the theoretical fundamentals of this field the book develops, assuming a basic knowledge of solid-state physics. The application areas of the theory covered include semiconductor lasers, detectors, electro-optic modulators, single-electron transistors, microcavities and double-barrier resonant tunneling diodes. One hundred problems with hints for solution help the readers to deepen their knowledge.