EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantum Dot fluorescent Protein Pairs as Fluorescence Resonance Energy Transfer Pairs

Download or read book Quantum Dot fluorescent Protein Pairs as Fluorescence Resonance Energy Transfer Pairs written by Allison Marie Dennis and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluorescence resonance energy transfer (FRET)-based biosensors have been designed to fluorometrically detect everything from proteolytic activity to receptor-ligand interactions and structural changes in proteins. While a wide variety of fluorophores have demonstrated effectiveness in FRET probes, several potential sensor components are particularly notable. Semiconductor quantum dots (QDs) are attractive FRET donors because they are rather bright, exhibit high quantum yields, and their nanoparticulate structure enables the attachment of multiple acceptor molecules. Fluorescent proteins (FPs) are also of particular interest for fluorescent biosensors because design elements necessary for signal transduction, probe assembly, and device delivery and localization for intracellular applications can all be genetically incorporated into the FP polypeptide. : The studies described in this thesis elucidate the important parameters for concerted QD-FP FRET probe design. Experimental results clarify issues of FRET pair selection, probe assembly, and donor-acceptor distance for the multivalent systems. Various analysis approaches are compared and guidelines asserted based on the results. To demonstrate the effectiveness of the QD-FP FRET probe platform, a ratiometric pH sensor is presented. The sensor, which uses the intrinsic pH-sensitivity of the FP mOrange to modulate the FP/QD emission ratio, exhibits a 20-fold change in its ratiometric measurement over a physiologically interesting pH range, making it a prime candidate for intracellular imaging applications.

Book FRET   F  rster Resonance Energy Transfer

Download or read book FRET F rster Resonance Energy Transfer written by Igor L. Medintz and published by John Wiley & Sons. This book was released on 2013-10-17 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: FRET – Förster Resonance Energy Transfer Meeting the need for an up-to-date and detailed primer on all aspects of the topic, this ready reference reflects the incredible expansion in the application of FRET and its derivative techniques over the past decade, especially in the biological sciences. This wide diversity is equally mirrored in the range of expert contributors. The book itself is clearly subdivided into four major sections. The first provides some background, theory, and key concepts, while the second section focuses on some common FRET techniques and applications, such as in vitro sensing and diagnostics, the determination of protein, peptide and other biological structures, as well as cellular biosensing with genetically encoded fluorescent indicators. The third section looks at recent developments, beginning with the use of fluorescent proteins, followed by a review of FRET usage with semiconductor quantum dots, along with an overview of multistep FRET. The text concludes with a detailed and greatly updated series of supporting tables on FRET pairs and Förster distances, together with some outlook and perspectives on FRET. Written for both the FRET novice and for the seasoned user, this is a must-have resource for office and laboratory shelves.

Book FRET   F  rster Resonance Energy Transfer

Download or read book FRET F rster Resonance Energy Transfer written by Igor L. Medintz and published by Wiley-VCH. This book was released on 2013-10-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: FRET – Förster Resonance Energy Transfer Meeting the need for an up-to-date and detailed primer on all aspects of the topic, this ready reference reflects the incredible expansion in the application of FRET and its derivative techniques over the past decade, especially in the biological sciences. This wide diversity is equally mirrored in the range of expert contributors. The book itself is clearly subdivided into four major sections. The first provides some background, theory, and key concepts, while the second section focuses on some common FRET techniques and applications, such as in vitro sensing and diagnostics, the determination of protein, peptide and other biological structures, as well as cellular biosensing with genetically encoded fluorescent indicators. The third section looks at recent developments, beginning with the use of fluorescent proteins, followed by a review of FRET usage with semiconductor quantum dots, along with an overview of multistep FRET. The text concludes with a detailed and greatly updated series of supporting tables on FRET pairs and Förster distances, together with some outlook and perspectives on FRET. Written for both the FRET novice and for the seasoned user, this is a must-have resource for office and laboratory shelves.

Book FRET   F  rster Resonance Energy Transfer

Download or read book FRET F rster Resonance Energy Transfer written by Igor L. Medintz and published by Wiley-VCH. This book was released on 2013-12-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: FRET – Förster Resonance Energy Transfer Meeting the need for an up-to-date and detailed primer on all aspects of the topic, this ready reference reflects the incredible expansion in the application of FRET and its derivative techniques over the past decade, especially in the biological sciences. This wide diversity is equally mirrored in the range of expert contributors. The book itself is clearly subdivided into four major sections. The first provides some background, theory, and key concepts, while the second section focuses on some common FRET techniques and applications, such as in vitro sensing and diagnostics, the determination of protein, peptide and other biological structures, as well as cellular biosensing with genetically encoded fluorescent indicators. The third section looks at recent developments, beginning with the use of fluorescent proteins, followed by a review of FRET usage with semiconductor quantum dots, along with an overview of multistep FRET. The text concludes with a detailed and greatly updated series of supporting tables on FRET pairs and Förster distances, together with some outlook and perspectives on FRET. Written for both the FRET novice and for the seasoned user, this is a must-have resource for office and laboratory shelves.

Book Handbook of Immunoassay Technologies

Download or read book Handbook of Immunoassay Technologies written by Sandeep K. Vashist and published by Academic Press. This book was released on 2018-01-02 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Immunoassay Technologies: Approaches, Performances, and Applications unravels the role of immunoassays in the biochemical sciences. During the last four decades, a wide range of immunoassays has been developed, ranging from the conventional enzyme-linked immunosorbent assays, to the smartphone-based point-of-care formats. The advances in rapid biochemical procedures, novel biosensing schemes, fully integrated lab-on-a-chip platforms, prolonged biomolecular storage strategies, device miniaturization and interfacing, and emerging smart system technologies equipped with personalized mobile healthcare tools are paving the way to next-generation immunoassays, and are all discussed in this comprehensive text. Immunoassays play a prominent role in clinical diagnostics as they are the eyes of healthcare professionals, helping them make informed clinical decisions via confirmed disease diagnosis, and thus enabling favorable health outcomes. The faster and reliable diagnosis of infections will further control their spread to uninfected persons. Similarly, immunoassays play a prominent role in veterinary diagnostics, food analysis, environmental monitoring, defense and security, and other bioanalytical settings. Therefore, they enable the detection of a plethora of analytes, which includes disease biomarkers, pathogens, drug impurities, environmental contaminants, allergens, food adulterants, drugs of abuse and various biomolecules. - Provides a valuable increase of understanding of cellular and biomedical functions - Gives the most updated resource in the field of immunoassays, providing the comprehensive details of various types of immunoassays that need to be performed in healthcare, and in industrial, environmental and other biochemical settings - Discusses all multifarious aspects of immunoassays - Describes the immunoassay formats, along with their principle of operation, characteristics, pros and cons, and potential biochemical and bioanalytical applications - Provides extensive knowledge and guided insights as detailed by experienced, renowned experts and key opinion makers in the field of immunoassays

Book Protein Actions  Principles and Modeling

Download or read book Protein Actions Principles and Modeling written by Ivet Bahar and published by Garland Science. This book was released on 2017-02-14 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Protein Actions: Principles and Modeling is aimed at graduates, advanced undergraduates, and any professional who seeks an introduction to the biological, chemical, and physical properties of proteins. Broadly accessible to biophysicists and biochemists, it will be particularly useful to student and professional structural biologists and molecular biophysicists, bioinformaticians and computational biologists, biological chemists (particularly drug designers) and molecular bioengineers. The book begins by introducing the basic principles of protein structure and function. Some readers will be familiar with aspects of this, but the authors build up a more quantitative approach than their competitors. Emphasizing concepts and theory rather than experimental techniques, the book shows how proteins can be analyzed using the disciplines of elementary statistical mechanics, energetics, and kinetics. These chapters illuminate how proteins attain biologically active states and the properties of those states. The book ends with a synopsis the roles of computational biology and bioinformatics in protein science.

Book Fluorescence Resonance Energy Transfer Between a Monolayer of Quantum Dots as Donors Adjacent to a Monolayer of Biorecognition Elements as Acceptors

Download or read book Fluorescence Resonance Energy Transfer Between a Monolayer of Quantum Dots as Donors Adjacent to a Monolayer of Biorecognition Elements as Acceptors written by Eleonora Petryayeva and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Properties of Semiconductor Nanocrystals

Download or read book Optical Properties of Semiconductor Nanocrystals written by S. V. Gaponenko and published by Cambridge University Press. This book was released on 1998-10-28 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the optical properties of low-dimensional semiconductor structures, a hot research area - for graduate students and researchers.

Book Fluorescent and Luminescent Probes for Biological Activity

Download or read book Fluorescent and Luminescent Probes for Biological Activity written by W. T. Mason and published by Elsevier. This book was released on 1999-04-16 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of fluorescent and luminescent probes to measure biological function has increased dramatically since publication of the First Edition due to their improved speed, safety, and power of analytical approach. This eagerly awaited Second Edition, also edited by Bill Mason, contains 19 new chapters and over two thirds new material, and is a must for all life scientists using optical probes.The contents include discussion of new optical methodologies for detection of proteins, DNA and other molecules, as well as probes for ions, receptors, cellular components, and gene expression. Emerging and advanced technologies for probe detection such as confocal laser scanning microscopy are also covered. This book will be essential for those embarking on work in the field or using new methods to enhance their research.TOPICS COVERED:* Single and multiphoton confocal microscopy* Applications of green fluorescent protein and chemiluminescent reporters to gene expression studies* Applications of new optical probes for imaging proteins in gels * Probes and detection technologies for imaging membrane potential in live cells* Use of optical probes to detect microorganisms* Raman and confocal raman microspectroscopy* Fluorescence lifetime imaging microscopy* Digital CCD cameras and their application in biological microscopy

Book FRET and FLIM Techniques

    Book Details:
  • Author : Theodorus W. J. Gadella
  • Publisher : Elsevier
  • Release : 2011-07-29
  • ISBN : 0080915124
  • Pages : 603 pages

Download or read book FRET and FLIM Techniques written by Theodorus W. J. Gadella and published by Elsevier. This book was released on 2011-07-29 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reviews the techniques Förster Resonance Energy Transfer (FRET) and Fluorescence Lifetime Imaging Microscopy (FLIM) providing researchers with step by step protocols and handy hints and tips. Both have become staple techniques in many biological and biophysical fields.

Book Applied Nanophotonics

    Book Details:
  • Author : Sergey V. Gaponenko
  • Publisher : Cambridge University Press
  • Release : 2019
  • ISBN : 1107145503
  • Pages : 453 pages

Download or read book Applied Nanophotonics written by Sergey V. Gaponenko and published by Cambridge University Press. This book was released on 2019 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to nanophotonics, covering basic principles, technology, and applications in lighting, lasers, and photovoltaics. Providing a wealth of information on materials and devices, and over 150 color figures, it is the 'go-to' guide for students in electrical engineering taking courses in nanophotonics.

Book Nanobiosensors for Agricultural  Medical and Environmental Applications

Download or read book Nanobiosensors for Agricultural Medical and Environmental Applications written by Mohd. Mohsin and published by Springer Nature. This book was released on 2021-01-11 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This informative book compiles the most up-to-date applications of nanobiosensors in fields ranging from agriculture to medicine. The introductory section describes different types of nanobiosensors and use of nanobiosensors towards a sustainable environment. The applications are divided into four broad sections for easy reading and understanding. The book discusses how manipulation, control and integration of atoms and molecules are used to form materials, structures, devices and systems in nano-scale. Chapters in the book shed light on the use of nanosensors in diagnostics and medical devices. Application in food processing as well as in cell signaling is also described. Nanobiosensors have immense use, and this book captures the most important ones.

Book F  rster Resonance Energy Transfer from Terbium Complexes to Quantum Dots for Multiplexed Homogeneous Immunoassays and Molecular Rulers

Download or read book F rster Resonance Energy Transfer from Terbium Complexes to Quantum Dots for Multiplexed Homogeneous Immunoassays and Molecular Rulers written by David Karl Wegner and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Förster resonance energy transfer (FRET) is a non-radiative energy transfer from a donor to an acceptor in close proximity. Due to its extremely sensitive distance dependence in the 1 - 20 nm range, FRET plays an important role in nanobiotechnology. Thereby FRET can be used as signal transduction system but also for the distance estimation between donor and acceptor. The selected FRET acceptors in this work were semiconductor nanocrystals (quantum dots, QDs). This type of luminophore is well known for its superior photophysical properties. Their strong and broad absorption and their bright, narrow-band, and size-tunable photoluminescence (PL) emission make QDs ideally suited for FRET application. Combing QDs as FRET acceptors with luminescent terbium complexes (LTC) as FRET donors offers exceptionally large Förster distances of more than 10 nm. The Förster distance is characteristic of a FRET pair and is the distance at which the FRET efficiency equals 50 %. A large Förster distance is desirable as it offers the detection of biological interactions over large distances. LTC are suitable FRET donors for QDs because they provide long excited-state lifetimes in the millisecond range. This long PL decay time enables time-gated measurements for the suppression of autofluorescence and PL of directly excited QDs, which strongly increases the detection sensitivity. Additionally, the structured PL emission bands of LTCs together with the size-tunable PL emission bands of QDs make this FRET pair ideal for the application in multiplexed diagnostics, which is the measurement of multiple biomarkers in a single sample.The PhD thesis consists of two parts. In the first part the LTC-QD FRET pair was used within homogeneous FRET immunoassays for the detection of the biomarkers prostate specific antigen (TPSA), neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), and epidermal growth factor receptor (EGFR). The immunoassay sensitivity was optimized using different types of antibodies IgG, F(ab')2,F(ab), and for EGFR single heavy chain antibodies, which differ largely in their size. The use of small-volume serum samples and measurements on clinical as well customized fluorescence plate readers result in picomolar detection limits for all measured biomarkers. In addition to these QD-based in vitro diagnostic tests, a detailed study of the different FRET-systems using time-resolved spectroscopy was performed. The investigation revealed the influence of the different antibodies on distance, functionality, and sensitivity of the FRET immunoassays. The study was completed by the measurement of NSE and CEA in a duplexed format and real patient samples were investigated.The second part was to use FRET for nanometric distance measurements as molecular or spectroscopic ruler. Time-resolved FRET measurements enabled the calculation of the distance between donor and acceptor. Therefore two different binding strategies were investigated to establish a close proximity between the LTC-donor to the QD-acceptor, namely biotin-streptavidin recognition and polyhistidine mediated self-assembly. A detailed time-resolved study was performed of QDs with different sizes, shapes, and surface coatings in combination with LTC bound to three different host biomolecules, which also possessed different sizes, shapes, orientations, and binding conditions. The analysis of the multi-exponential decay curves of donor and acceptor allowed to obtain information about the size, shape, and biofunctionality of the investigated QD bioconjugates. The results were in agreement with other structural analysis methods, such as transmission electron microscopy (TEM) or dynamic light scattering (DLS), but with the advantage of a homogeneous measurement with three-dimensional resolution (not possible for TEM), without the inclusion of a hydration shell (drawback for DLS), and at low concentration in the same environment as used for the biological application.

Book Optical Biosensors  Present   Future

Download or read book Optical Biosensors Present Future written by Frances S. Ligler and published by Gulf Professional Publishing. This book was released on 2002-04-16 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: PART I. Optical Biosensors: The Present -- Chapter 1. Optrode-based Fiber Optic Biosensors -- Israel Biran and David R. Walt -- Chapter 2. Evanescent Wave Fiber Optic Biosensors -- Chris Rowe Taitt and Frances S. Ligler -- Chapter 3. Planar Waveguides for Fluorescence Biosensors -- Kim Sapsford, Chris Rowe Taitt, and Frances S. Ligler -- Chapter 4. Flow Immnosensor -- Anne W. Kusterbeck -- Chapter 5. Time Resolved Fluorescence -- Richard Thompson -- Chapter 6. Electrochemiluminescence -- Mark M. Richter -- Chapter 7. Surface Plasmon Resonance Biosensors -- Jiri Homola, Sinclair Yee, and David Myszka -- Chapter 8. The Resonant Mirror Optical Biosensor -- Tim Kinning and Paul Edwards -- Chapter 9. Interferometric Biosensors -- Daniel P. Campbell and Candice J. McCloskey -- Part II. Optical Biosensors: The Future -- Chapter 10. Genetic Engineering of Signaling Molecules -- Agatha Feltus and Sylvia Daunert -- Chapter 11. Artificial Receptors for Chemosensors -- Thomas W. Bell and Nicholas ...

Book Understanding Light Microscopy

Download or read book Understanding Light Microscopy written by Jeremy Sanderson and published by John Wiley & Sons. This book was released on 2019-05-06 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces readers to the enlightening world of the modern light microscope There have been rapid advances in science and technology over the last decade, and the light microscope, together with the information that it gives about the image, has changed too. Yet the fundamental principles of setting up and using a microscope rests upon unchanging physical principles that have been understood for years. This informative, practical, full-colour guide fills the gap between specialised edited texts on detailed research topics, and introductory books, which concentrate on an optical approach to the light microscope. It also provides comprehensive coverage of confocal microscopy, which has revolutionised light microscopy over the last few decades. Written to help the reader understand, set up, and use the often very expensive and complex modern research light microscope properly, Understanding Light Microscopy keeps mathematical formulae to a minimum—containing and explaining them within boxes in the text. Chapters provide in-depth coverage of basic microscope optics and design; ergonomics; illumination; diffraction and image formation; reflected-light, polarised-light, and fluorescence microscopy; deconvolution; TIRF microscopy; FRAP & FRET; super-resolution techniques; biological and materials specimen preparation; and more. Gives a didactic introduction to the light microscope Encourages readers to use advanced fluorescence and confocal microscopes within a research institute or core microscopy facility Features full-colour illustrations and workable practical protocols Understanding Light Microscopy is intended for any scientist who wishes to understand and use a modern light microscope. It is also ideal as supporting material for a formal taught course, or for individual students to learn the key aspects of light microscopy through their own study.

Book Handbook of Biological Confocal Microscopy

Download or read book Handbook of Biological Confocal Microscopy written by James Pawley and published by Springer Science & Business Media. This book was released on 2010-08-04 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: Once the second edition was safely off to the printer, the 110 larger world of micro-CT and micro-MRI and the smaller world authors breathed a sigh of relief and relaxed, secure in the belief revealed by the scanning and transmission electron microscopes. that they would “never have to do that again. ” That lasted for 10 To round out the story we even have a chapter on what PowerPoint years. When we ?nally awoke, it seemed that a lot had happened. does to the results, and the annotated bibliography has been In particular, people were trying to use the Handbook as a text- updated and extended. book even though it lacked the practical chapters needed. There As with the previous editions, the editor enjoyed a tremendous had been tremendous progress in lasers and ?ber-optics and in our amount of good will and cooperation from the 124 authors understanding of the mechanisms underlying photobleaching and involved. Both I, and the light microscopy community in general, phototoxicity. It was time for a new book. I contacted “the usual owe them all a great debt of gratitude. On a more personal note, I suspects” and almost all agreed as long as the deadline was still a would like to thank Kathy Lyons and her associates at Springer for year away.

Book Fluorescence Resonance Energy Transfer Studies of Protein Interactions

Download or read book Fluorescence Resonance Energy Transfer Studies of Protein Interactions written by Sarah Friede Martin and published by . This book was released on 2008 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: