Download or read book Quantum Algorithms via Linear Algebra written by Richard J. Lipton and published by MIT Press. This book was released on 2014-12-05 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of all the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, this primer makes quantum algorithms accessible to students and researchers in computer science without the complications of quantum mechanical notation, physical concepts, and philosophical issues. After explaining the development of quantum operations and computations based on linear algebra, the book presents the major quantum algorithms, from seminal algorithms by Deutsch, Jozsa, and Simon through Shor's and Grover's algorithms to recent quantum walks. It covers quantum gates, computational complexity, and some graph theory. Mathematical proofs are generally short and straightforward; quantum circuits and gates are used to illuminate linear algebra; and the discussion of complexity is anchored in computational problems rather than machine models. Quantum Algorithms via Linear Algebra is suitable for classroom use or as a reference for computer scientists and mathematicians.
Download or read book Quantum Algorithms via Linear Algebra written by Richard J. Lipton and published by MIT Press. This book was released on 2014-12-05 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of all the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, this primer makes quantum algorithms accessible to students and researchers in computer science without the complications of quantum mechanical notation, physical concepts, and philosophical issues. After explaining the development of quantum operations and computations based on linear algebra, the book presents the major quantum algorithms, from seminal algorithms by Deutsch, Jozsa, and Simon through Shor's and Grover's algorithms to recent quantum walks. It covers quantum gates, computational complexity, and some graph theory. Mathematical proofs are generally short and straightforward; quantum circuits and gates are used to illuminate linear algebra; and the discussion of complexity is anchored in computational problems rather than machine models. Quantum Algorithms via Linear Algebra is suitable for classroom use or as a reference for computer scientists and mathematicians.
Download or read book Introduction to Quantum Algorithms via Linear Algebra second edition written by Richard J. Lipton and published by MIT Press. This book was released on 2021-04-06 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, it makes quantum algorithms accessible to students and researchers in computer science who have not taken courses in quantum physics or delved into fine details of quantum effects, apparatus, circuits, or theory.
Download or read book Introduction to Quantum Algorithms via Linear Algebra second edition written by Richard J. Lipton and published by MIT Press. This book was released on 2021-04-06 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computing explained in terms of elementary linear algebra, emphasizing computation and algorithms and requiring no background in physics. This introduction to quantum algorithms is concise but comprehensive, covering many key algorithms. It is mathematically rigorous but requires minimal background and assumes no knowledge of quantum theory or quantum mechanics. The book explains quantum computation in terms of elementary linear algebra; it assumes the reader will have some familiarity with vectors, matrices, and their basic properties, but offers a review of the relevant material from linear algebra. By emphasizing computation and algorithms rather than physics, it makes quantum algorithms accessible to students and researchers in computer science who have not taken courses in quantum physics or delved into fine details of quantum effects, apparatus, circuits, or theory.
Download or read book Classical and Quantum Computation written by Alexei Yu. Kitaev and published by American Mathematical Soc.. This book was released on 2002 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a rapidly developing topic: the theory of quantum computing. Following the basics of classical theory of computation, the book provides an exposition of quantum computation theory. In concluding sections, related topics, including parallel quantum computation, are discussed.
Download or read book An Introduction to Quantum Computing written by Phillip Kaye and published by Oxford University Press. This book was released on 2007 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors provide an introduction to quantum computing. Aimed at advanced undergraduate and beginning graduate students in these disciplines, this text is illustrated with diagrams and exercises.
Download or read book A Mathematical Introduction to Electronic Structure Theory written by Lin Lin and published by SIAM. This book was released on 2019-06-05 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on first principle quantum mechanics, electronic structure theory is widely used in physics, chemistry, materials science, and related fields and has recently received increasing research attention in applied and computational mathematics. This book provides a self-contained, mathematically oriented introduction to the subject and its associated algorithms and analysis. It will help applied mathematics students and researchers with minimal background in physics understand the basics of electronic structure theory and prepare them to conduct research in this area. The book begins with an elementary introduction of quantum mechanics, including the uncertainty principle and the Hartree?Fock theory, which is considered the starting point of modern electronic structure theory. The authors then provide an in-depth discussion of two carefully selected topics that are directly related to several aspects of modern electronic structure calculations: density matrix based algorithms and linear response theory. Chapter 2 introduces the Kohn?Sham density functional theory with a focus on the density matrix based numerical algorithms, and Chapter 3 introduces linear response theory, which provides a unified viewpoint of several important phenomena in physics and numerics. An understanding of these topics will prepare readers for more advanced topics in this field. The book concludes with the random phase approximation to the correlation energy. The book is written for advanced undergraduate and beginning graduate students, specifically those with mathematical backgrounds but without a priori knowledge of quantum mechanics, and can be used for self-study by researchers, instructors, and other scientists. The book can also serve as a starting point to learn about many-body perturbation theory, a topic at the frontier of the study of interacting electrons.
Download or read book Quantum Computing written by Mikio Nakahara and published by CRC Press. This book was released on 2008-03-11 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering both theory and progressive experiments, Quantum Computing: From Linear Algebra to Physical Realizations explains how and why superposition and entanglement provide the enormous computational power in quantum computing. This self-contained, classroom-tested book is divided into two sections, with the first devoted to the theoretical aspect
Download or read book Quantum Information written by Gregg Jaeger and published by Springer Science & Business Media. This book was released on 2007-04-03 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an overview for practitioners and students of quantum physics and information science. It provides ready access to essential information on quantum information processing and communication, such as definitions, protocols and algorithms. Quantum information science is rarely found in clear and concise form. This book brings together this information from its various sources. It allows researchers and students in a range of areas including physics, photonics, solid-state electronics, nuclear magnetic resonance and information technology, in their applied and theoretical branches, to have this vital material directly at hand.
Download or read book Quantum Computing written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2019-04-27 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics, the subfield of physics that describes the behavior of very small (quantum) particles, provides the basis for a new paradigm of computing. First proposed in the 1980s as a way to improve computational modeling of quantum systems, the field of quantum computing has recently garnered significant attention due to progress in building small-scale devices. However, significant technical advances will be required before a large-scale, practical quantum computer can be achieved. Quantum Computing: Progress and Prospects provides an introduction to the field, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing real-world problems. This report considers hardware and software requirements, quantum algorithms, drivers of advances in quantum computing and quantum devices, benchmarks associated with relevant use cases, the time and resources required, and how to assess the probability of success.
Download or read book Quantum Computing Since Democritus written by Scott Aaronson and published by Cambridge University Press. This book was released on 2013-03-14 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Takes students and researchers on a tour through some of the deepest ideas of maths, computer science and physics.
Download or read book Quantum Computation and Quantum Information written by Michael A. Nielsen and published by Cambridge University Press. This book was released on 2010-12-09 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.
Download or read book Machine Learning with Quantum Computers written by Maria Schuld and published by Springer Nature. This book was released on 2021-10-17 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
Download or read book Problems And Solutions In Quantum Computing And Quantum Information written by Willi-hans Steeb and published by World Scientific Publishing Company. This book was released on 2004-03-29 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computing and quantum information are two of the fastest-growing and most exciting research areas in physics. The possibilities of using non-local behaviour of quantum mechanics to factorize integers in random polynomial time have added to this new interest. This invaluable book provides a collection of problems in quantum computing and quantum information together with detailed solutions. It consists of two parts: in the first part finite-dimensional systems are considered, while the second part deals with finite-dimensional systems.All the important concepts and topics are included, such as quantum gates and quantum circuits, entanglement, teleportation, Bell states, Bell inequality, Schmidt decomposition, quantum Fourier transform, magic gates, von Neumann entropy, quantum cryptography, quantum error correction, coherent states, squeezed states, POVM measurement, beam splitter and Kerr-Hamilton operator. The topics range in difficulty from elementary to advanced. Almost all of the problems are solved in detail and most of them are self-contained. All relevant definitions are given.Students can learn from this book important principles and strategies required for problem solving. Teachers will find it useful as a supplement, since important concepts and techniques are developed through the problems. It can also be used as a text or a supplement for linear and multilinear algebra or matrix theory.
Download or read book Introduction to Quantum Information Science written by Masahito Hayashi and published by Springer. This book was released on 2014-08-22 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the basics of quantum information, e.g., foundation of quantum theory, quantum algorithms, quantum entanglement, quantum entropies, quantum coding, quantum error correction and quantum cryptography. The required knowledge is only elementary calculus and linear algebra. This way the book can be understood by undergraduate students. In order to study quantum information, one usually has to study the foundation of quantum theory. This book describes it from more an operational viewpoint which is suitable for quantum information while traditional textbooks of quantum theory lack this viewpoint. The current book bases on Shor's algorithm, Grover's algorithm, Deutsch-Jozsa's algorithm as basic algorithms. To treat several topics in quantum information, this book covers several kinds of information quantities in quantum systems including von Neumann entropy. The limits of several kinds of quantum information processing are given. As important quantum protocols, this book contains quantum teleportation, quantum dense coding, quantum data compression. In particular conversion theory of entanglement via local operation and classical communication are treated too. This theory provides the quantification of entanglement, which coincides with von Neumann entropy. The next part treats the quantum hypothesis testing. The decision problem of two candidates of the unknown state are given. The asymptotic performance of this problem is characterized by information quantities. Using this result, the optimal performance of classical information transmission via noisy quantum channel is derived. Quantum information transmission via noisy quantum channel by quantum error correction are discussed too. Based on this topic, the secure quantum communication is explained. In particular, the quantification of quantum security which has not been treated in existing book is explained. This book treats quantum cryptography from a more practical viewpoint.
Download or read book Quantum Computing for Everyone written by Chris Bernhardt and published by MIT Press. This book was released on 2019-03-19 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to an exciting new area in computation, explaining such topics as qubits, entanglement, and quantum teleportation for the general reader. Quantum computing is a beautiful fusion of quantum physics and computer science, incorporating some of the most stunning ideas from twentieth-century physics into an entirely new way of thinking about computation. In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means. Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement—which, he says, is easier to describe mathematically than verbally—and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as “spooky action at a distance”); and introduces quantum cryptography. He recaps standard topics in classical computing—bits, gates, and logic—and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.
Download or read book Supervised Learning with Quantum Computers written by Maria Schuld and published by Springer. This book was released on 2018-08-30 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum machine learning investigates how quantum computers can be used for data-driven prediction and decision making. The books summarises and conceptualises ideas of this relatively young discipline for an audience of computer scientists and physicists from a graduate level upwards. It aims at providing a starting point for those new to the field, showcasing a toy example of a quantum machine learning algorithm and providing a detailed introduction of the two parent disciplines. For more advanced readers, the book discusses topics such as data encoding into quantum states, quantum algorithms and routines for inference and optimisation, as well as the construction and analysis of genuine ``quantum learning models''. A special focus lies on supervised learning, and applications for near-term quantum devices.