EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantized Phenomena of Transport and Magneto Optics in Magnetic Topological Insulator Heterostructures

Download or read book Quantized Phenomena of Transport and Magneto Optics in Magnetic Topological Insulator Heterostructures written by Masataka Mogi and published by Springer Nature. This book was released on 2022-05-07 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents experimental studies on emergent transport and magneto-optical properties in three-dimensional topological insulators with two-dimensional Dirac fermions on their surfaces. Designing magnetic heterostructures utilizing a cutting-edge growth technique (molecular beam epitaxy) stabilizes and manifests new quantization phenomena, as confirmed by low-temperature electrical transport and time-domain terahertz magneto-optical measurements. Starting with a review of the theoretical background and recent experimental advances in topological insulators in terms of a novel magneto-electric coupling, the author subsequently explores their magnetic quantum properties and reveals topological phase transitions between quantum anomalous Hall insulator and trivial insulator phases; a new topological phase (the axion insulator); and a half-integer quantum Hall state associated with the quantum parity anomaly. Furthermore, the author shows how these quantum phases can be significantly stabilized via magnetic modulation doping and proximity coupling with a normal ferromagnetic insulator. These findings provide a basis for future technologies such as ultra-low energy consumption electronic devices and fault-tolerant topological quantum computers.

Book Exploration of Quantum Transport Phenomena via Engineering Emergent Magnetic Fields in Topological Magnets

Download or read book Exploration of Quantum Transport Phenomena via Engineering Emergent Magnetic Fields in Topological Magnets written by Yukako Fujishiro and published by Springer. This book was released on 2022-12-03 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses novel electronic and thermoelectronic properties arising from topological spin textures as well as topologically non-trivial electronic structures. In particular, it focuses on a unique topological spin texture, i.e., spin hedgehog lattice, emerging in a chiral magnet and explore its novel properties which are distinct from the conventional skyrmion lattice, and discusses the possibility of realizing high-temperature quantum anomalous Hall effect through quantum confinement effect in topological semimetal. This book benefits students and researchers working in the field of condensed matter physics, through providing comprehensive understanding of the current status and the outlook in the field of topological magnets.

Book Quantum Transport in 2 and 3 Dimensional Topological Insulators

Download or read book Quantum Transport in 2 and 3 Dimensional Topological Insulators written by Di Xiao and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological insulators are materials that are insulating in the bulk but that conduct via topologically protected states on the boundary. The concept of topology in condensed matter physics was first introduced to explain the integer quantum Hall (IQH) effect. The perfect quantization of these topologically protected edge states, insensitive to sample geometry and disorder, stimulated an extensive search for many exciting new topological materials. One of the milestones along the journey was the theoretical prediction and experimental discovery of Z2 topological insulators.The first class of Z2 topological insulators discovered was the 2-dimensional topological insulator (2D TI), also known as the quantum spin Hall (QSH) insulator. The 2D TI can be viewed as a variation of the IQH system but with time-reversal-symmetry (TRS). The topological invariant for a 2D TI is the Z2 number, defined by its nontrivial band structure instead of the Chern number in the IQH case. Generalizing this idea to 3 dimensions led to the discovery of the 3D TI with four Z2 invariants. Both the 2D and 3D TIs are of interest as model platforms for testing theoretical problems of fundamental interest. For instance, they allow us to realize artificial condensed matter analogs of fundamental particles such as Majorana fermions and axions that have yet to be observed in nature. They are also of interest for potential technological applications, principally spintronics and quantum computing.This dissertation focuses on the synthesis, characterization, and transport properties of both 2D and 3D TIs. We first discuss the 2D TI candidate material system, type II InAs/GaSb quantum wells, which exhibits a rich topological phase diagram that can be tuned by several parameters such as sample geometry or electrostatic gating. By changing the thicknesses of relevant layers, we are able to enter a new insulating regime where unexpected high-density quantum oscillations are observed. We elucidate this phenomenon through theoretical calculation and through control experiments. The seemingly controversial coexistence of high density states and the insulating regime can be explained by the effect of the attractive Coulomb interaction, which was not considered in earlier theories.The second topic we address is quantum transport in 3D TI systems. Breaking the TRS of the 3D TI surface states leads to many exotic phenomena, including the quantum anomalous Hall (QAH) effect and the axion insulator state. By constructing a sandwich heterostructure that has different magnetic coercive fields in the top and bottom magnetic layers, while keeping the center layer free from magnetic impurities, both the QAH and the axion insulator state can be observed in low-temperature transport measurements, when the magnetization alignment of the top and bottom layers is parallel and antiparallel, respectively. We also discuss the scaling behavior of the topological quantum phase transition between these two states.

Book Theoretical Aspects and New Developments in Magneto Optics

Download or read book Theoretical Aspects and New Developments in Magneto Optics written by J.T. Devreese and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced Study Institute on "Theoretical Aspects and New Developments in Magneto-Optics" was held at the University of Antwerpen (R.U.C.A.), from July 16 to July 28, 1979. The Institute was sponsored by NATO. Co-sponsors were: Agfa-Gevaert (Belgium), A.S.L.K. (Belgium), Bell Telephone Mfg. CO. (Belgium), Esso Belgium, Generale Bankmaatschappij (Belgium), General Motors (Belgium), I.B.M. (Belgium), Kredietbank (Belgium), Metallurgie Hoboken-Over pelt (Belgium), National Science Foundation (U.S.A). A total of 60 lecturers and participants attended the Institute. Scope of the Institute The magneto-optic phenomena are due to the change of the polarizability of a substance as a result of the splitting of the quantized energy bands. Most of these phenomena were discovered during the second half of this century. The understanding of the magneto-optical effects of all kinds, however, was brought by the advent of quantum mechanics, and since then important progress has been made in many fields of experimental methods and techniques.

Book Topological Insulators

    Book Details:
  • Author : Gregory Tkachov
  • Publisher : CRC Press
  • Release : 2015-10-14
  • ISBN : 9814613266
  • Pages : 180 pages

Download or read book Topological Insulators written by Gregory Tkachov and published by CRC Press. This book was released on 2015-10-14 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of dynamic developments that have occurred in condensed matter physics after the recent discovery of a new class of electronic materials: topological insulators. A topological insulator is a material that behaves as a band insulator in its interior, while acting as a metallic conductor at its surface. The surface current car

Book Quantum Transport of Two species Dirac Fermions in Dual gated Three dimensional Topological Insulators

Download or read book Quantum Transport of Two species Dirac Fermions in Dual gated Three dimensional Topological Insulators written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at the double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.

Book Exploring the Three dimensional Quantum Anomalous Hall Effect and Topological Superconductivity in Topological Insulator Heterostructures

Download or read book Exploring the Three dimensional Quantum Anomalous Hall Effect and Topological Superconductivity in Topological Insulator Heterostructures written by Ruoxi Zhang and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological materials exhibit unique properties that make them robust against local defects and perturbations. These properties stem from the distinctive band structure compared to conventional materials, which are characterized by different topological invariants. In this thesis, we study two phenomena that arise in epitaxial topological insulator (TIs) films/heterostructures. The first phenomenon is the quantum anomalous Hall (QAH) effect. The QAH effect requires no external magnetic field and possesses non-dissipative chiral edge states that are resistant to local disorders. The second phenomenon is the topological superconducting (TSC) states. The TSC state hosts quasiparticle excitations, including Majorana zero modes (MZMs) and chiral Majorana edge modes (CMEMs). These excitations have potential applications in fault-tolerant topological quantum computations. The first experimental observation of the QAH effect was realized in molecular beam epitaxy (MBE)-grown magnetically doped TI thin films, which offer the advantages of scalability and reproducibility. However, the introduction of magnetic dopants also leads to higher disorder density in TI thin films. To overcome this limitation, we employed MBE-grown magnetically doped TI/TI/magnetically doped TI sandwich heterostructures to separate the magnetic dopants from the TI bulk. By employing this method, we successfully realized high Chern number QAH states, Chern domain walls, and hundred-nanometer-thick QAH samples. These results reveal new phases of matter and the underlying physics of the QAH phase transition induced by interlayer coupling. The second half of the thesis describes our effort in the TSC state in QAH insulators and TIs with induced superconductivity. The first project in this effort focuses on the search for CMEMs, which are predicted to emerge in QAH/superconductor hybrid structures. We examined a prior transport experiment that claimed the realization of CMEMs by measuring the two-terminal resistance. We improved the experimental design by fabricating Josephson junction and tunneling junction devices based on Bi2Te3 and (Bi,Sb)2Te3, and obtained transport results that suggest the dominance of Dirac surface states in vortex generation in the junction area.

Book Quantum Edge Transport in Topological Insulators

Download or read book Quantum Edge Transport in Topological Insulators written by Andrew J. Bestwick and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In the quantum Hall effect, electrons circulate in one direction around the edge of a 2D sample. The robustness of these states is protected by the topology of the band structure and scattering is only possible if thermally-activated 2D conduction provides a path across the bulk. However, the environmental conditions required for the effect (large magnetic fields and, usually, low temperatures) make it unsuitable for most practical applications. This dissertation discusses the implementation of two similar topological transport phenomena, in the absence of magnetic fields, using the class of materials known as topological insulators. First, it reports on investigations into the quantum spin Hall effect, a time-reversal-symmetric state with counterpropagating, spin-polarized edge channels. Mean free paths in this case are limited to only a few micrometers due to a scattering mechanism under investigation. Second, it reports on recent results on the quantum anomalous Hall effect demonstrating part-per-10,000 conductance quantization, arising from nearly perfect transport through one-way edge channels, in magnetically-doped thin films of 3D topological insulators. It shows that dissipation only occurs due to thermally-activated states that can be nearly eliminated via an unexpected magnetocaloric effect.

Book QUANTUM TRANSPORT IN TOPOLOGICAL MATERIALS

Download or read book QUANTUM TRANSPORT IN TOPOLOGICAL MATERIALS written by Run Xiao and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation focuses on the synthesis, characterization, fabrication, and electrical transport measurements of topological materials, including magnetically doped topological insulators and Dirac semimetal Cd3As2. Bismuth-chalcogenide topological insulators have time-reversal-symmetry-protected surface states due to the strong spin-orbit coupling. Breaking the time-reversal symmetry by magnetic dopants can lead to fascinating exotic phenomena, such as the quantum anomalous Hall effect. On the other hand, Dirac semimetals host three-dimensional Dirac fermions and can be identified as a parent phase of other topological phases, such as Weyl semimetals. In this dissertation, quantum transport measurements are performed on thin films of topological materials to investigate and understand the unusual electronic states that host these topological phases. These studies can motivate and facilitate the development of potential applications of topological materials, especially in spintronics and quantum computing. The first topological material studied in this dissertation is a magnetically doped topological insulator system: Cr doped (Bi,Sb)2Te3 - (Bi,Sb)2Te3 - Cr doped (Bi,Sb)2Te3 sandwich heterostructure. By tuning the chemical and asymmetric potentials using dual gates, both the quantum anomalous hall effect, due to the topology in the momentum space, and the topological Hall effect, due to the topology in real space, can be observed in this heterostructure system. We also mapped out a phase diagram of the topological Hall and quantum anomalous Hall effects as a function of the chemical and asymmetry potentials, paving a way to understand and manipulate the chiral magnetic spin textures in real space. The second topological material is Dirac semimetal Cd3As2. We investigated the integer quantum Hall effect in Cd3As2 thin films under strong to moderate quantum confinement (thicknesses of 10 nm, 12 nm, and 15 nm). In all the films, we observed the integer quantum Hall effect in the spin-polarized lowest Landau level (filling factor [nu]=1) and at spin-degenerate higher index Landau levels with even filling factors ([nu]=2,4,6). We also observed the lifting of the Landau level spin degeneracy at v=3 with strong quantum confinement. A tight-binding calculation suggests that the enhanced g-factor due to the quantum confinement and corrections from nearby subbands can be the reason for the emergence of v=3 quantum Hall plateau. Last, we explored the introduction of the transition metal Mn into Cd3As2 thin films to break the time-reversal symmetry. Scanning transmission electron microscopy of these films shows a formation of an Mn-rich layer on top of a pure Cd3As2 layer using both uniform and delta doping methods. The low solubility of Mn in Cd3As2 can be the reason for the phase separation. The Mn-rich region shows out-of-plane magnetic anisotropy in superconducting quantum interference device magnetometry measurements. Moreover, the presence of the Mn surfactant lowers the carrier density in the Cd3As2 layer, and an incipient quantum Hall effect can be observed in low-temperature transport measurements.

Book Topological Insulator Systems with Magnetism

Download or read book Topological Insulator Systems with Magnetism written by Joon Lee and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation describes topological insulator systems hybridized with magnetism. The Dirac surface states induced by strong spin-orbit interaction can be modified by breaking time-reversal symmetry that protects the surface state. We study the modified surface states of topological insulators by introducing magnetism by doping magnetic atoms or interfacing a magnetic layer to the surface. Also, we explore potential spintronics applications of topological insulators by utilizing magnetic tunnel junctions to evidence the inherently spin-polarized texture of the topological insulator surface state. For this dissertation research, single crystalline topological insulator thin films grown by molecular beam epitaxy have been employed. From the motivation of breaking time-reversal symmetry in the surface state, the first experiments study the structural, magnetic, and magneto-transport properties of a magnetically doped, three-dimensional topological insulator, bismuth telluride doped with Mn. We observed ferromagnetism with a Curie temperature up to 17 K in films with ~2-10% Mn concentrations. The observed ferromagnetism is independent of carrier density in the Mn-doped bismuth telluride films, suggesting that it is not mediated by charge carriers. The next topological insulator system with magnetism is a hybrid topological insulator/ferromagnet heterostructure as a new approach for topological insulator hybrid systems using a dilute magnetic semiconductor Ga1-xMnxAs. A highly resistive Ga1-xMnxAs with out-of-plane magnetic anisotropy is cleanly interfaced with a topological insulator Bi2-xSbxTe3-ySey by molecular beam epitaxy. Magneto-transport measurements on a top-gated heterostructure device show a crossover from positive magneto-conductance to negative magneto-conductance as well as a systematic emergence of an anomalous Hall effect as the temperature is lowered or as the chemical potential approaches the Dirac point. The results are possibly interpreted as the modification of the surface state at the interface by the adjacent, ferromagnetic Ga1-xMnxAs layer. The last topological insulator system with magnetism is a topological insulator channel with a magnetic tunnel junction on it. We seek a potential role of topological insulators in spintronics as generators of carrier spin polarization. Electrical detection of the inherent spin polarization of the topological insulator surface state was demonstrated using a permalloy/Al2O3 magnetic tunnel junction on a (Bi,Sb)2Te3 channel. The observed hysteretic spin signals occurring at the magnetic switching field of the ferromagnet permalloy layer can be interpreted as the projection of the current-induced spin polarization on a topological insulator surface onto the magnetization of the ferromagnet via tunneling.

Book Spin Current

    Book Details:
  • Author : Sadamichi Maekawa
  • Publisher : Oxford University Press
  • Release : 2017
  • ISBN : 0198787073
  • Pages : 541 pages

Download or read book Spin Current written by Sadamichi Maekawa and published by Oxford University Press. This book was released on 2017 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.

Book Topology in Magnetism

    Book Details:
  • Author : Jiadong Zang
  • Publisher : Springer
  • Release : 2018-09-24
  • ISBN : 3319973347
  • Pages : 426 pages

Download or read book Topology in Magnetism written by Jiadong Zang and published by Springer. This book was released on 2018-09-24 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents both experimental and theoretical aspects of topology in magnetism. It first discusses how the topology in real space is relevant for a variety of magnetic spin structures, including domain walls, vortices, skyrmions, and dynamic excitations, and then focuses on the phenomena that are driven by distinct topology in reciprocal momentum space, such as anomalous and spin Hall effects, topological insulators, and Weyl semimetals. Lastly, it examines how topology influences dynamic phenomena and excitations (such as spin waves, magnons, localized dynamic solitons, and Majorana fermions). The book also shows how these developments promise to lead the transformative revolution of information technology.

Book Inorganic and Organic Thin Films

Download or read book Inorganic and Organic Thin Films written by Yu Song and published by John Wiley & Sons. This book was released on 2021-07-19 with total page 771 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn more about foundational and advanced topics in polymer thin films and coatings besides species with this powerful two-volume resource The two-volume Inorganic and Organic Thin Films: Fundamentals, Fabrication, and Applications delivers a foundational resource for current researchers and commercial users involved in the design and fabrication of thin films. The book offers newcomers to the field a thorough description of new design theory, fabrication methods, and applications of advanced thin films. Readers will discover the physics and chemistry underlying the manufacture of new thin films and coatings in this leading new resource that promises to become a handbook for future applications of the technology. This one-stop reference brings together all important aspects of inorganic and polymeric thin films and coatings, including construction, assembly, deposition, functionality, patterning, and characterization. Explorations of their applications in industries as diverse as information technology, new energy, biomedical engineering, aerospace, and oceanographic engineering round out this fulsome exploration of one of the most exciting and rapidly developing areas of scientific and industrial research today. Readers will also learn from: A comprehensive introduction to the progress of thin films and coatings as well as fundamentals in functional thin films and coatings An exploration of multi-layered magnetic thin films for electron transport control and signal sensing, including giant magnetoresistance, colossal magnetoresistance, tunneling magnetoresistance, and the quantum anomalous Holzer effect An in time summary of high-quality magneto-optics, nanophotonics, spin waves and spintronics using bismuth-substituted iron garnet thin films as examples A thorough discussion of template-assisted fabrication of nanostructure thin films for ultrasensitive detection of chemicals and biomolecules A treatment of biomass derived functional films and coatings Perfect for materials scientists and inorganic chemists, Inorganic and Organic Thin Films will also earn a place in the libraries of solid state physicists and physical chemists working in private industry, as well as polymer and surface chemists who seek to improve their understanding of thin films and coatings.

Book Magnetic Nanostructures

Download or read book Magnetic Nanostructures written by Hari Singh Nalwa and published by . This book was released on 2002 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Twelve contributions comprise a reference source that is a coherent presentation of the state of the art in this fast growing area of nanotechnology research. Magnetic nanostructures are important for their phenomenal potential for storage; their great commercial value will come from applications in

Book Topology And Physics

    Book Details:
  • Author : Chen Ning Yang
  • Publisher : World Scientific
  • Release : 2019-01-09
  • ISBN : 9813278684
  • Pages : 231 pages

Download or read book Topology And Physics written by Chen Ning Yang and published by World Scientific. This book was released on 2019-01-09 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'The book is an engaging and influential collection of significant contributions from an assembly of world expert leaders and pioneers from different fields, working at the interface between topology and physics or applications of topology to physical systems … The book explores many interesting and novel topics that lie at the intersection between gravity, quantum fields, condensed matter, physical cosmology and topology … A rich, well-organized, and comprehensive overview of remarkable and insightful connections between physics and topology is here made available to the physics reader.'Contemporary PhysicsSince its birth in Poincaré's seminal 1894 'Analysis Situs', topology has become a cornerstone of mathematics. As with all beautiful mathematical concepts, topology inevitably — resonating with that Wignerian principle of the effectiveness of mathematics in the natural sciences — finds its prominent role in physics. From Chern-Simons theory to topological quantum field theory, from knot invariants to Calabi-Yau compactification in string theory, from spacetime topology in cosmology to the recent Nobel Prize winning work on topological insulators, the interactions between topology and physics have been a triumph over the past few decades.In this eponymous volume, we are honoured to have contributions from an assembly of grand masters of the field, guiding us with their world-renowned expertise on the subject of the interplay between 'Topology' and 'Physics'. Beginning with a preface by Chen Ning Yang on his recollections of the early days, we proceed to a novel view of nuclei from the perspective of complex geometry by Sir Michael Atiyah and Nick Manton, followed by an entrée toward recent developments in two-dimensional gravity and intersection theory on the moduli space of Riemann surfaces by Robbert Dijkgraaf and Edward Witten; a study of Majorana fermions and relations to the Braid group by Louis H Kauffman; a pioneering investigation on arithmetic gauge theory by Minhyong Kim; an anecdote-enriched review of singularity theorems in black-hole physics by Sir Roger Penrose; an adventure beyond anyons by Zhenghan Wang; an aperçu on topological insulators from first-principle calculations by Haijun Zhang and Shou-Cheng Zhang; finishing with synopsis on quantum information theory as one of the four revolutions in physics and the second quantum revolution by Xiao-Gang Wen. We hope that this book will serve to inspire the research community.

Book Solid State Properties

    Book Details:
  • Author : Mildred Dresselhaus
  • Publisher : Springer
  • Release : 2018-01-17
  • ISBN : 3662559226
  • Pages : 521 pages

Download or read book Solid State Properties written by Mildred Dresselhaus and published by Springer. This book was released on 2018-01-17 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.

Book Photoelectron Spectroscopy

    Book Details:
  • Author : Stefan Hüfner
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 3662031507
  • Pages : 525 pages

Download or read book Photoelectron Spectroscopy written by Stefan Hüfner and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date introduction to the field, treating in depth the electronic structures of atoms, molecules, solids and surfaces, together with brief descriptions of inverse photoemission, spin-polarized photoemission and photoelectron diffraction. Experimental aspects are considered throughout and the results carefully interpreted by theory. A wealth of measured data is presented in tabullar for easy use by experimentalists.