EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Quantitative Measurement Techniques for Wind Turbine Blade Aerodynamic Performance

Download or read book Quantitative Measurement Techniques for Wind Turbine Blade Aerodynamic Performance written by Tyler Gallant and published by . This book was released on 2017 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The installed capacity of wind turbines has been growing rapidly in recent years, creating an increased need for accurate measurements and models of wind turbine performance to further their development. There is a need in the literature for experimental data to validate theoretical models and guide turbine blade design. Two related projects were completed to develop measurement techniques and provide such data: the use of a five-hole probe and in-blade data acquisition system to measure the wind turbine blade angle of attack, and the use of tuft flow visualization and a digital image processing algorithm to quantitatively assess the flow direction and behaviour of a wind turbine blade. Experiments were completed at the University of Waterloo Wind Generation Research Facility using a 3.3 m diameter test turbine. Wind speed, rotational speed, shaft torque and angular position were controlled or monitored throughout all experiments. A 3D printed test blade was equipped with a five-hole pressure probe and data acquisition system to measure the flow angles at various radial locations. For tuft flow visualization testing, a separate rotor consisting of three aerodynamic blades was installed, and tufts and a camera were mounted to the surface of one of the blades. Extensive software was developed for controlling instruments and collecting experimental data. The angle of attack and span-wise flow angles were successfully measured as a function of the tip speed ratio, yaw-offset position, radial location and azimuthal position. Variations in the angle of attack with these variables were consistent with wind turbine aerodynamics theory, and results were in close agreement with results calculated using two separate models from the literature. Angle of attack values typically ranged from 7° to 25° throughout the tests, with fluctuations as high as 7°when the wind turbine was yawed. Uncertainty values in the measurements were typically found to be within ±0.2°, which shows great potential for the method. Tuft flow visualization measurements were processed by logging the orientation of each individual tuft, calculating their average orientations and interpolating to develop a contour map of flow direction over the wind turbine blade as a function of tip speed ratio, yaw-position and azimuthal position. Throughout testing, the fraction of tufts indicating stall ranged from 25% to as high as 60% as the tip speed ratio was decreased. Contour maps showed that separation typically formed first on the trailing edge of the blade near the root, and expanded towards the leading edge and tip. This pattern is in agreement with trends found for similar blades in the literature.

Book Wind Turbine Aerodynamic Performance Calculation

Download or read book Wind Turbine Aerodynamic Performance Calculation written by Tongguang Wang and published by Springer Nature. This book was released on 2023-12-15 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with horizontal-axis wind turbine aerodynamic performance prediction methods. It focuses on the traditional and newly-developed methods for the wind turbine aerodynamic performance calculation. The fundamental theories of fluid mechanics essential for understanding the other parts of this book are firstly introduced in Part I, followed by the blade element momentum theory in Part II, with special attentions to a systematic review of various correction models. Part III is mainly about the prescribed and free vortex wake methods, while the state-of-art computational fluid dynamics (CFD) methods are detailed in Part IV. Part III thoroughly describes the prescribed and free vortex wake methods which are still of great importance towards realistic investigation of wind turbine performance. Despite the highly computational cost, the CFD methods in Part IV have received increasing interest from the academic community since they provide more detailed information about the flow field around the wind turbine. This has shed a light in combination with the correction models introduced in Part II on more advanced research for wind turbine. This book is intended for researchers and students interested in aerodynamics of wind turbine and is particularly suitable for practicing engineers in wind energy. Readers can gain a comprehensive understanding in both classical and up-to-date methods for the study of wind turbine aerodynamics. The authors hope that this book can promote the research and development of wind turbines.

Book Wind Turbine Airfoils and Blades

Download or read book Wind Turbine Airfoils and Blades written by Jin Chen and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-12-04 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind Turbine Airfoils and Blades introduces new ideas in the design of wind turbine airfoils and blades based on functional integral theory and the finite element method, accompanied by results from wind tunnel testing. The authors also discuss the optimization of wind turbine blades as well as results from aerodynamic analysis. This book is suitable for researchers and engineers in aeronautics and can be used as a textbook for graduate students.

Book Experimental and Numerical Investigation of Aerodynamic Performance for Vertical  Axis Wind Turbine Models with Various Blade Designs

Download or read book Experimental and Numerical Investigation of Aerodynamic Performance for Vertical Axis Wind Turbine Models with Various Blade Designs written by Travis E. Salyers and published by . This book was released on 2016 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Author's abstract: The demand for wind energy as a renewable source is rising substantially. A growing interest exists in utilizing potential energy conversion applications in areas with less powerful and less consistent wind conditions. In these areas, vertical-axis wind turbines (VAWTs) possess several advantages over the conventional horizontal-axis type. Savonius turbines are drag-based rotors which operate due to a pressure difference between the advancing and retreating blades. These turbines are simpler in design, less expensive to install, non-dependent of wind direction, and more efficient in lower wind speeds. In the present study, six different rotor designs with equal swept areas are analyzed with wind tunnel testing and numerical simulations. These models include a traditional Savonius with 2 blades, “CC” model, “QM” model, and 90 degree helical twist models with 2, 3, and 4 blades. The models were designed using the CAD software SolidWorks. Due to the complex geometry of the blades, the physical models were then 3D printed for experimental testing. Subsonic, open-type wind tunnel testing was used for measuring RPM and reactional torque over a range of wind speeds. For the numerical approach, ANSYS Fluent simulations were used for analyzing aerodynamic performance by utilizing moving reference frame and sliding mesh model techniques. For the models with helical twist, the cross-sections of the blades varies in the Y-direction. Because of this, a 3-dimensional and transient method was used for accurately solving torque and power coefficients. The 5 new rotor geometries included in the study create a center of pressure further from the axis of rotation causing greater torque on the turbine shaft, compared to the traditional Savonius turbine. The CC and QM cross-sections reduce the total range of negative torque on the blades by 20 degrees, compared to the traditional Savonius model. Helical designs better spread the applied torque over a complete revolution resulting in positive torque over all operational angles. Helical models with 2 and 3 blades have the best self-starting capability in low wind speeds. Under no generator loading, Helical3 begins rotation of 35 RPM at just 1.4 m/s wind velocity. The highest power coefficient in the study is achieved, both experimentally and numerically, by the helical VAWT with 2 blades. Averaged over one full rotation, a maximum power coefficient of 0.14 is observed with the Helical2 model at tip-speed ratio of 0.475.

Book Aerodynamics of Wind Turbines

Download or read book Aerodynamics of Wind Turbines written by Martin O. L. Hansen and published by Earthscan. This book was released on 2013-05-13 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition it has been entirely updated and substantially extended to reflect advances in technology research into rotor aerodynamics and the structural response of the wind turbine structure. Topics covered include increasing mass flow through the turbine performance at low and high wind speeds assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method is also covered as are eigenmodes and the dynamic behaviour of a turbine. The new material includes a description of the effects of the dynamics and how this can be modelled in an 'aeroelastic code' which is widely used in the design and verification of modern wind turbines. Further the description of how to calculate the vibration of the whole construction as well as the time varying loads has been substantially updated."--Publisher's website.

Book Horizontal Axis Wind Turbine Blade Design and Its Aerodynamic Performance Analysis Using Improved Blade Element Momentum Theory  Wind Tunnel Measurement  and Numerical Simulation

Download or read book Horizontal Axis Wind Turbine Blade Design and Its Aerodynamic Performance Analysis Using Improved Blade Element Momentum Theory Wind Tunnel Measurement and Numerical Simulation written by 白啟正 and published by . This book was released on 2013 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wind Turbine Design

Download or read book Wind Turbine Design written by Ion Paraschivoiu and published by Presses inter Polytechnique. This book was released on 2002 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: The depletion of global fossil fuel reserves combined with mounting environmental concerns has served to focus attention on the development of ecologically compatible and renewable alternative sources of energy. Wind energy, with its impressive growth rate of 40% over the last five years, is the fastest growing alternate source of energy in the world since its purely economic potential is complemented by its great positive environmental impact. The wind turbine, whether it may be a Horizontal Axis Wind Turbine (HAWT) or a Vertical Axis Wind Turbine (VAWT), offers a practical way to convert the wind energy into electrical or mechanical energy. Although this book focuses on the aerodynamic design and performance of VAWTs based on the Darrieus concept, it also discusses the comparison between HAWTs and VAWTs, future trends in design and the inherent socio-economic and environmental friendly aspects of wind energy as an alternate source of energy.

Book Numerical Simulation of Wind Turbines

Download or read book Numerical Simulation of Wind Turbines written by Alessandro Bianchini and published by MDPI. This book was released on 2021-09-10 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains the research contributions belonging to the Special Issue "Numerical Simulation of Wind Turbines", published in 2020-2021. They consist of 15 original research papers and 1 editorial. Different topics are discussed, from innovative design solutions for large and small wind turbine to control, from advanced simulation techniques to noise prediction. The variety of methods used in the research contributions testifies the need for a holistic approach to the design and simulation of modern wind turbines and will be able to stimulate the interest of the wind energy community.

Book Advances in wind turbine blade design and materials

Download or read book Advances in wind turbine blade design and materials written by W.A. Timmer and published by Elsevier Inc. Chapters. This book was released on 2013-10-31 with total page 46 pages. Available in PDF, EPUB and Kindle. Book excerpt: This chapter focuses on airfoils for wind turbine blades and their characteristics. The use of panel codes such as XFOIL and RFOIL and CFD codes for the prediction of airfoil characteristics is briefly described. The chapter then discusses the requirements for wind turbine blade airfoils and the effect of leading edge roughness and Reynolds number. After a description of how airfoils can be tested the chapter discusses methods to represent airfoil characteristics at high angles of attack. A number of methods for correcting characteristics for the effect of three-dimensional flow on the blade are presented. The chapter then discusses ways to establish a data set for blade design and concludes with a view on future research in the field of wind turbine blade airfoils.

Book Aerodynamic Analysis of a Wind Turbine with Telescopic Blades

Download or read book Aerodynamic Analysis of a Wind Turbine with Telescopic Blades written by Mustahib Imraan and published by . This book was released on 2013 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Telescopic Blade Wind Turbine Systems offer great benefits to the wind industry and in particular to low speed wind site for potential development and enhancement. An inherent feature of a telescopic blade system is the discontinuity or step change in chord that exists between the fixed inner blade section, and the movable or telescopic outer blade section. This is its main distinctive feature when compared to a standard wind turbine blade, and it is therefore a major point of difference from an aerodynamic performance point of view as well. This thesis attempts to investigate the effect of the sudden change in chord of a Telescopic Blade Wind Turbine System, using a combination of experimental, analytical, and computational studies. In particular, it is aimed at studying the dynamics of the flow around the step change region and its influence on blade aerodynamics; at investigating the influence of the step change and telescopic blade parameters on the turbine performance and energy output; and at developing a correlation for the losses that arise from the step change region. Performance testing was carried out at model-scale in the wind tunnel, of a Telescopic Blade Wind Turbine System with two-stage telescopic blade s (i.e. blades with two sections of different chords), having chord ratios of 0.6 and 0.4, and for blade extensions ranging 0 - 40% (in length of the first section). The power coefficient Cp of the wind turbine was found to decrease with extension, with a 25% decrease in maximum Cp obtained for a 20% blade extension. This is attributed to additional losses arising from the step change in chord. It was hypothesised that the step change region induces vortex rollup in a manner similar to that which happens at the tip. Correlations developed to quantify losses arising from the step change in the chord of a telescopic blade are in good agreement with experimental data, and this would pave the way for improved performance predictions. Investigations into the aerodynamic performance of a single telescopic blade with a step change in chord were also carried out in the wind tunnel. From the surface static pressure measurements and flow visualisation studies, it was established that the sudden change in the blade chord causes an abrupt drop in pressure around the step region, which causes vortex roll, confirming the hypothesis drawn from performance testing. Energy output analyses reveal that the percentage increase in the annual energy output for the telescopic blade wind turbine system over the corresponding non-telescopic blade system could be as high as ~48% for a blade with 40% extension at a chord ratio of 0.6 in wind class 2. For the range of shape factors, chord ratios and blade extensions studied in this research, the reduction in annual energy output due to the step change in blade chord is found to be in the range of 15 to 1% for Wind Class 2 to 7 respectively.

Book Advances in Wind Turbine Blade Design and Materials

Download or read book Advances in Wind Turbine Blade Design and Materials written by Povl Brondsted and published by Woodhead Publishing. This book was released on 2023-01-14 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Wind Turbine Blade Design and Materials, Second Edition, builds on the thorough review of the design and functionality of wind turbine rotor blades and the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Reviews the design and functionality of wind turbine rotor blades Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades Provides an invaluable reference for researchers and innovators in the field of wind

Book Introduction to Wind Turbine Aerodynamics

Download or read book Introduction to Wind Turbine Aerodynamics written by A. P. Schaffarczyk and published by Springer Nature. This book was released on 2020-02-28 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an introduction to the topic for professionals and students with a diverse range of backgrounds. Wind Turbine Aerodynamics is a self-contained textbook that shows how to progress from the basics of fluid mechanics to modern wind turbine blade design. It presents the fundamentals of fluid dynamics and inflow conditions, as well as extensive information on theories describing the aerodynamics of wind turbines. After examining a number of related experiments, the book applies the lessons learned to blade design. The text of the 2nd edition has been thoroughly revised, with a focus on improved readability. The examples and solutions have been extended to explain each problem in much greater detail.

Book Aerodynamics of Wind Turbines

Download or read book Aerodynamics of Wind Turbines written by Sven Schmitz and published by John Wiley & Sons. This book was released on 2019-12-03 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review of the aerodynamics, design and analysis, and optimization of wind turbines, combined with the author’s unique software Aerodynamics of Wind Turbines is a comprehensive introduction to the aerodynamics, scaled design and analysis, and optimization of horizontal-axis wind turbines. The author –a noted expert on the topic – reviews the fundamentals and basic physics of wind turbines operating in the atmospheric boundary layer. He then explores more complex models that help in the aerodynamic analysis and design of turbine models. The text contains unique chapters on blade element momentum theory, airfoil aerodynamics, rotational augmentation, vortex-wake methods, actuator-line modeling, and designing aerodynamically scaled turbines for model-scale experiments. The author clearly demonstrates how effective analysis and design principles can be used in a wide variety of applications and operating conditions. The book integrates the easy-to-use, hands-on XTurb design and analysis software that is available on a companion website for facilitating individual analyses and future studies. This component enhances the learning experience and helps with a deeper and more complete understanding of the subject matter. This important book: Covers aerodynamics, design and analysis and optimization of wind turbines Offers the author’s XTurb design and analysis software that is available on a companion website for individual analyses and future studies Includes unique chapters on blade element momentum theory, airfoil aerodynamics, rotational augmentation, vortex-wake methods, actuator-line modeling, and designing aerodynamically scaled turbines for model-scale experiments Demonstrates how design principles can be applied to a variety of applications and operating conditions Written for senior undergraduate and graduate students in wind energy as well as practicing engineers and scientists, Aerodynamics of Wind Turbines is an authoritative text that offers a guide to the fundamental principles, design and analysis of wind turbines.

Book Wind Energy Handbook

Download or read book Wind Energy Handbook written by Tony Burton and published by John Wiley & Sons. This book was released on 2001-12-12 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: As environmental concerns have focused attention on the generation of electricity from clean and renewable sources wind energy has become the world's fastest growing energy source. The Wind Energy Handbook draws on the authors' collective industrial and academic experience to highlight the interdisciplinary nature of wind energy research and provide a comprehensive treatment of wind energy for electricity generation. Features include: An authoritative overview of wind turbine technology and wind farm design and development In-depth examination of the aerodynamics and performance of land-based horizontal axis wind turbines A survey of alternative machine architectures and an introduction to the design of the key components Description of the wind resource in terms of wind speed frequency distribution and the structure of turbulence Coverage of site wind speed prediction techniques Discussions of wind farm siting constraints and the assessment of environmental impact The integration of wind farms into the electrical power system, including power quality and system stability Functions of wind turbine controllers and design and analysis techniques With coverage ranging from practical concerns about component design to the economic importance of sustainable power sources, the Wind Energy Handbook will be an asset to engineers, turbine designers, wind energy consultants and graduate engineering students.

Book Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

Download or read book Aerodynamics and Optimal Design of Biplane Wind Turbine Blades written by Phillip Chiu and published by . This book was released on 2017 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under extreme conditions. Finally, considering these aerodynamic loads, the blade mass reductions achievable by biplane blades are quantified. The internal structure of the biplane blades are designed using a multi-disciplinary optimization which seeks to minimize mass, subject to constraints which represent realistic design requirements. Using this approach, it is shown that biplane blades can be built more than 45% lighter than a similarly-optimized conventional blade; the reasons for these mass reductions are examined in detail. As blade length is increased, these mass reductions are shown to be even more significant. These large mass reductions are indicative of significant cost of electricity reductions from rotors fitted with biplane blades. Taken together, these results show that biplane blades are a concept which can enable the next generation of larger wind turbine rotors.