Download or read book Quadratic Forms Over Semilocal Rings written by R. Baeza and published by Springer. This book was released on 2006-11-22 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Quadratic and Hermitian Forms over Rings written by Max-Albert Knus and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its birth (in Babylon?) till 1936 the theory of quadratic forms dealt almost exclusively with forms over the real field, the complex field or the ring of integers. Only as late as 1937 were the foundations of a theory over an arbitrary field laid. This was in a famous paper by Ernst Witt. Still too early, apparently, because it took another 25 years for the ideas of Witt to be pursued, notably by Albrecht Pfister, and expanded into a full branch of algebra. Around 1960 the development of algebraic topology and algebraic K-theory led to the study of quadratic forms over commutative rings and hermitian forms over rings with involutions. Not surprisingly, in this more general setting, algebraic K-theory plays the role that linear algebra plays in the case of fields. This book exposes the theory of quadratic and hermitian forms over rings in a very general setting. It avoids, as far as possible, any restriction on the characteristic and takes full advantage of the functorial aspects of the theory. The advantage of doing so is not only aesthetical: on the one hand, some classical proofs gain in simplicity and transparency, the most notable examples being the results on low-dimensional spinor groups; on the other hand new results are obtained, which went unnoticed even for fields, as in the case of involutions on 16-dimensional central simple algebras. The first chapter gives an introduction to the basic definitions and properties of hermitian forms which are used throughout the book.
Download or read book Quadratic Forms Over Semi local Rings written by Kenneth I. Mandelberg and published by . This book was released on 1973 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Quadratic Forms over Fields written by Tsit-Yuen Lam and published by American Mathematical Soc.. This book was released on 2005 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new version of the author's prizewinning book, Algebraic Theory of Quadratic Forms (W. A. Benjamin, Inc., 1973), gives a modern and self-contained introduction to the theory of quadratic forms over fields of characteristic different from two. Starting with few prerequisites beyond linear algebra, the author charts an expert course from Witt's classical theory of quadratic forms, quaternion and Clifford algebras, Artin-Schreier theory of formally real fields, and structural theorems on Witt rings, to the theory of Pfister forms, function fields, and field invariants. These main developments are seamlessly interwoven with excursions into Brauer-Wall groups, local and global fields, trace forms, Galois theory, and elementary algebraic K-theory, to create a uniquely original treatment of quadratic form theory over fields. Two new chapters totaling more than 100 pages have been added to the earlier incarnation of this book to take into account some of the newer results and more recent viewpoints in the area. As is characteristic of this author's expository style, the presentation of the main material in this book is interspersed with a copious number of carefully chosen examples to illustrate the general theory. This feature, together with a rich stock of some 280 exercises for the thirteen chapters, greatly enhances the pedagogical value of this book, both as a graduate text and as a reference work for researchers in algebra, number theory, algebraic geometry, algebraic topology, and geometric topology.
Download or read book Quadratic and Hermitian Forms written by W. Scharlau and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: For a long time - at least from Fermat to Minkowski - the theory of quadratic forms was a part of number theory. Much of the best work of the great number theorists of the eighteenth and nineteenth century was concerned with problems about quadratic forms. On the basis of their work, Minkowski, Siegel, Hasse, Eichler and many others crea ted the impressive "arithmetic" theory of quadratic forms, which has been the object of the well-known books by Bachmann (1898/1923), Eichler (1952), and O'Meara (1963). Parallel to this development the ideas of abstract algebra and abstract linear algebra introduced by Dedekind, Frobenius, E. Noether and Artin led to today's structural mathematics with its emphasis on classification problems and general structure theorems. On the basis of both - the number theory of quadratic forms and the ideas of modern algebra - Witt opened, in 1937, a new chapter in the theory of quadratic forms. His most fruitful idea was to consider not single "individual" quadratic forms but rather the entity of all forms over a fixed ground field and to construct from this an algebra ic object. This object - the Witt ring - then became the principal object of the entire theory. Thirty years later Pfister demonstrated the significance of this approach by his celebrated structure theorems.
Download or read book Quadratic and Hermitian Forms written by McMaster University and published by American Mathematical Soc.. This book was released on 1984 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains the proceedings of the 1983 Seminar on Quadratic and Hermitian Forms held at McMaster University, July 1983. Between 1945 and 1965, most of the work in quadratic (and hermitian) forms took place in arithmetic theory (M Eichler, M Kneser, O T O'Meara).
Download or read book Orderings Valuations and Quadratic Forms written by Tsit-Yuen Lam and published by American Mathematical Soc.. This book was released on 1983 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an introduction to ordered fields and reduced quadratic forms using valuation-theoretic techniques. This book describes the techniques of residue forms and the relevant Springer theory.
Download or read book K Theory and Algebraic Geometry Connections with Quadratic Forms and Division Algebras written by Bill Jacob and published by American Mathematical Soc.. This book was released on 1995 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 2 of two - also available in a set of both volumes.
Download or read book The Algebraic and Geometric Theory of Quadratic Forms written by Richard S. Elman and published by American Mathematical Soc.. This book was released on 2008-07-15 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive study of the algebraic theory of quadratic forms, from classical theory to recent developments, including results and proofs that have never been published. The book is written from the viewpoint of algebraic geometry and includes the theory of quadratic forms over fields of characteristic two, with proofs that are characteristic independent whenever possible. For some results both classical and geometric proofs are given. Part I includes classical algebraic theory of quadratic and bilinear forms and answers many questions that have been raised in the early stages of the development of the theory. Assuming only a basic course in algebraic geometry, Part II presents the necessary additional topics from algebraic geometry including the theory of Chow groups, Chow motives, and Steenrod operations. These topics are used in Part III to develop a modern geometric theory of quadratic forms.
Download or read book Recent Advances in Real Algebraic Geometry and Quadratic Forms written by Bill Jacob and published by American Mathematical Soc.. This book was released on 1994 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers collected here present an up-to-date record of the current research developments in the fields of real algebraic geometry and quadratic forms. Articles range from the technical to the expository and there are also indications to new research directions.
Download or read book Quadratic Forms with Applications to Algebraic Geometry and Topology written by Albrecht Pfister and published by Cambridge University Press. This book was released on 1995-09-28 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gem of a book bringing together 30 years worth of results that are certain to interest anyone whose research touches on quadratic forms.
Download or read book Specialization of Quadratic and Symmetric Bilinear Forms written by Manfred Knebusch and published by Springer Science & Business Media. This book was released on 2011-01-22 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Mathematician Said Who Can Quote Me a Theorem that’s True? For the ones that I Know Are Simply not So, When the Characteristic is Two! This pretty limerick ?rst came to my ears in May 1998 during a talk by T.Y. Lam 1 on ?eld invariants from the theory of quadratic forms. It is—poetic exaggeration allowed—a suitable motto for this monograph. What is it about? At the beginning of the seventies I drew up a specialization theoryofquadraticandsymmetricbilinear formsover ?elds[32].Let? : K? L?? be a place. Then one can assign a form? (?)toaform? over K in a meaningful way ? if? has “good reduction” with respect to? (see§1.1). The basic idea is to simply apply the place? to the coe?cients of?, which must therefore be in the valuation ring of?. The specialization theory of that time was satisfactory as long as the ?eld L, and therefore also K, had characteristic 2. It served me in the ?rst place as the foundation for a theory of generic splitting of quadratic forms [33], [34]. After a very modest beginning, this theory is now in full bloom. It became important for the understanding of quadratic forms over ?elds, as can be seen from the book [26]of Izhboldin–Kahn–Karpenko–Vishik for instance. One should note that there exists a theoryof(partial)genericsplittingofcentralsimplealgebrasandreductivealgebraic groups, parallel to the theory of generic splitting of quadratic forms (see [29] and the literature cited there).
Download or read book Compositions of Quadratic Forms written by Daniel B. Shapiro and published by Walter de Gruyter. This book was released on 2011-06-24 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbański, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Boštjan Gabrovšek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
Download or read book Quadratic Algebras Clifford Algebras and Arithmetic Witt Groups written by Alexander J. Hahn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quadratic Algebras, Clifford Algebras, and Arithmetic Forms introduces mathematicians to the large and dynamic area of algebras and forms over commutative rings. The book begins very elementary and progresses gradually in its degree of difficulty. Topics include the connection between quadratic algebras, Clifford algebras and quadratic forms, Brauer groups, the matrix theory of Clifford algebras over fields, Witt groups of quadratic and symmetric bilinear forms. Some of the new results included by the author concern the representation of Clifford algebras, the structure of Arf algebra in the free case, connections between the group of isomorphic classes of finitely generated projectives of rank one and arithmetic results about the quadratic Witt group.
Download or read book Algebraic K Theory written by R. Keith Dennis and published by Springer. This book was released on 2006-11-15 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Algebra written by M. Hazewinkel and published by Elsevier. This book was released on 2009-07-08 with total page 637 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, there are references to relevant articles, books or lecture notes to help the reader. An excellent index has been included which is extensive and not limited to definitions, theorems etc. The Handbook of Algebra will publish articles as they are received and thus the reader will find in this third volume articles from twelve different sections. The advantages of this scheme are two-fold: accepted articles will be published quickly and the outline of the Handbook can be allowed to evolve as the various volumes are published. A particularly important function of the Handbook is to provide professional mathematicians working in an area other than their own with sufficient information on the topic in question if and when it is needed.- Thorough and practical source of information - Provides in-depth coverage of new topics in algebra - Includes references to relevant articles, books and lecture notes
Download or read book Handbook of K Theory written by Eric Friedlander and published by Springer Science & Business Media. This book was released on 2005-07-18 with total page 1148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.