Download or read book Python Machine Learning Illustrated Guide For Beginners Intermediates written by William Sullivan and published by PublishDrive. This book was released on 2019-08-20 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Machine Learning Illustrated Guide For Beginners & Intermediates Machines Can Learn ?! Automation and systematization is taking over the world. Slowly but surely we continuously see the rapid expansion of artificial intelligence, self-check out cash registers, automated phone lines, people-less car-washes , etc. The world is changing, find out how python programming ties into machine learning so you don't miss out on this next big trend! This is your beginner's step by step guide with illustrated pictures! Let's face it, machine learning is here to stay for the foreseeable future and will impact the lives billions worldwide! Drastically changing the world we live in the most fundamental ways, from our perceptions, life-style, thinking and in other aspects as well. What You Will Learn Linear & Polynomial Regression Support Vector Machines Decision Trees Random Forest KNN Algorithm Naive Bayes Algorithm Unsupervised Learning Clustering Cross Validation Grid Search And, much, much more! If you want to learn more about python machine learning it is highly recommended you start from the ground up by using this book. Normally books on this subject matter are expensive! Why not start off by making a small and affordable investment with your illustrated beginners guide that walks you through python machine learning step by step Why choose this book? Addresses Fundamental Concepts Goes Straight To The Point, uNo fluff or Nonsense Practical Examples High Quality Diagrams "Noob friendly" (Good For Beginners & Intermediates) Contains Various Aspects of Machine Learning Endorses Learn "By Doing Approach" Concise And To The Point I been working tirelessly to provide you quality books at an affordable price. I believe this book will give you the confidence to tackle python machine learning at a fundamental level. What are you waiting for? Make the greatest investment in YOUR knowledge base right now. Buy your copy now!
Download or read book Deep Learning With Python Illustrated Guide For Beginners Intermediates written by William Sullivan and published by PublishDrive. This book was released on 2018-10-24 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning With Python Illustrated Guide For Beginners And Intermediates "Learn By Doing Approach" Includes Keras with Tensorflow Backend Deep learning originates from a broader family of machine learning, including supervised and unsupervised learning The python programming language is one of the most popular languages for programmers in the 21st century. This programming language has been a fundamental cornerstone in a lot of technology we use today. -Things we take for granted on a daily basis. Developing both desktop and web applications, and more interestingly enough has been used to accomplish many artificial intelligence feats. The world is constantly changing and evolving and it appears machine learning could be the way of the future! As we speak technology on a massive scale is being developed to replace mundane and repetitive tasks humans interface with everyday through the use of "deep learning". Ultimately, this means less human errors and a more efficient ways of operating for many corporations. You can potentially become the next big start-up! Develop software, web development tools and many more online ventures! Companies That Use Python Currently Google Facebook Dropbox Yahoo IBM Mozilla Quora Why Programmers Choose To Use Python? Readable & Maintainable Code Dynamic Type System Compatible with Major Platforms and Systems Robust Standard Library Simplifies Complex Software Development Test Driven Development Highly Sought After Skill-Set For Employers Invest in your knowledge base by buying your copy right now. The greatest investment you can make is an investment in yourself! Python will pave the road of technological advancements and very much so shape the world we live in. Become apart of this global progression towards advanced technology through the use of "deep learning". What You'll Learn What is deep learning Theory of Artificial Neural Network Artificial Neural Network with Keras Image Classification with Convolutional Neural Network Environment Setup Natural Language Processing Evaluating and Tuning the ANN Sequence Modeling And, much, much more! By the end of this book you will have grasped the fundamentals of python programming & deep learning! There is also illustrations to go along to help you understand and retain the info on a much more profound level. Picture diagrams have scientifically proven to accelerate the learning process by over 120%! Buy Your Copy Right Now!
Download or read book Deep Learning Illustrated written by Jon Krohn and published by Addison-Wesley Professional. This book was released on 2019-08-05 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Download or read book Learning Python written by Mark Lutz and published by "O'Reilly Media, Inc.". This book was released on 2007-10-22 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: Portable, powerful, and a breeze to use, Python is ideal for both standalone programs and scripting applications. With this hands-on book, you can master the fundamentals of the core Python language quickly and efficiently, whether you're new to programming or just new to Python. Once you finish, you will know enough about the language to use it in any application domain you choose. Learning Python is based on material from author Mark Lutz's popular training courses, which he's taught over the past decade. Each chapter is a self-contained lesson that helps you thoroughly understand a key component of Python before you continue. Along with plenty of annotated examples, illustrations, and chapter summaries, every chapter also contains Brain Builder, a unique section with practical exercises and review quizzes that let you practice new skills and test your understanding as you go. This book covers: Types and Operations -- Python's major built-in object types in depth: numbers, lists, dictionaries, and more Statements and Syntax -- the code you type to create and process objects in Python, along with Python's general syntax model Functions -- Python's basic procedural tool for structuring and reusing code Modules -- packages of statements, functions, and other tools organized into larger components Classes and OOP -- Python's optional object-oriented programming tool for structuring code for customization and reuse Exceptions and Tools -- exception handling model and statements, plus a look at development tools for writing larger programs Learning Python gives you a deep and complete understanding of the language that will help you comprehend any application-level examples of Python that you later encounter. If you're ready to discover what Google and YouTube see in Python, this book is the best way to get started.
Download or read book Using R in HR Analytics written by Dr Martin R. Edwards and published by Kogan Page Publishers. This book was released on 2024-10-03 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Confidently analyse your organization's HR data using R and R Studio to gain insights that improve people strategy and business decision-making. Effective use of HR data has the power to transform a business. However, this is only possible if HR practitioners have the knowledge, skills and confidence to analyse the data and to draw evidence-based insights from it. This book is the practical guide that HR professionals need. Through worked examples, this book shows readers how to carry out and interpret analyses of HR data in areas such as recruitment, performance, employee engagement and diversity. People professionals are then shown how to use the results to develop robust people strategies and to support more effective evidence-based decision-making. Using R in HR Analytics provides a thorough grounding in the differences between descriptive reporting and predictive analytics as well as the methods and measures used to identify the validity of results. There is also expert guidance on the role of artificial intelligence, machine learning and large language modelling on HR analytics. Written for HR professionals at any level, there is essential coverage of data privacy and the ethical considerations of using people data. Online resources include sample datasets to allow readers to practice analysing HR data.
Download or read book Python Programming Illustrated For Beginners Intermediates Learn By Doing Approach Step By Step Ultimate Guide To Mastering Python written by William Sullivan and published by PublishDrive. This book was released on 2018-06-21 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Programming Illustrated Guide For Beginners & Intermediates Whether you are at a beginner or intermediate level this book is crafted just for you! Learn Python Fundamentals This is your beginner's step by step guide with illustrated pictures! Learn one of the most essential, renowned and practical programming languages in 21st century. Python is a general purpose programming used by many start-ups. Its design emphasizes code readability, notably using significant whitespace Did you know Mozilla Firefox, PBS, Reddit, and even NASA! All use Python programming for their websites? Providing constructs whether small or large scale Python is versatile and can be used in a variety of ways. What You Will Learn: Python Running Your First Program Identifiers Variables Data Types Codes Practical Implementations And, much, much more! If you want to learn more about python programming it is highly recommended you start from the ground up by using this book. Why not start off by making a small and affordable investment with your illustrated beginners guide that walks you through python programming step by step. Why choose this book? Addresses Fundamental Concepts Goes Straight To The Point, No fluff or nonsense Practical Examples High Quality Diagrams "Noob friendly" (Good For beginners) Object Oriented Programming With Python Lambda Expressions Endorses Learn "By Doing Approach" Concise And To The Point I been working tirelessly to provide you quality books at an affordable price. I believe this book will give you the confidence to tackle python programming at a fundamental level. What are you waiting for? Make the greatest investment in knowledge base right now. Buy your copy now!
Download or read book Predictive HR Analytics written by Dr Martin R. Edwards and published by Kogan Page Publishers. This book was released on 2024-06-03 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the essential guide for HR practitioners who want to gain the statistical and analytical knowledge to fully harness the potential of HR metrics and organizational people-related data. The ability to use and analyse data has become an invaluable skill for HR professionals to not only identify trends and patterns, but also make well-informed business decisions. The third edition of Predictive HR Analytics provides a clear, accessible framework for understanding people data, working with people analytics and advanced statistical techniques. Readers will be taken step-by-step through worked examples, showing them how to carry out analyses and interpret HR data in areas such as employee engagement, performance and turnover. Learn how to make effective business decision with this updated edition that includes the latest materials on biased algorithms and data protection, supported by online resources consisting of R and Excel data sets.
Download or read book Machine Learning For Beginners Guide Algorithms written by William Sullivan and published by PublishDrive. This book was released on 2017-08-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machines can LEARN ?!?! Machine learning occurs primarily through the use of " algorithms" and other elaborate procedures Whether you're a novice, intermediate or expert this book will teach you all the ins, outs and everything you need to know about machine learning Note: Bonus chapters included inside! Instead of spending hundreds or even thousands of dollars on courses/materials why not read this book instead? Its a worthwhile read and the most valuable investment you can make for yourself Other books easily retail for $50-$100+ and have far less quality content. This book is by far superior and exceeds any other book available for beginners. What You'll Learn Supervised Learning Unsupervised Learning Reinforced Learning Algorithms Decision Tree Random Forest Neural Networks Python Deep Learning And much, much more! This is the most comprehensive and easy to read step by step guide in machine learning that exists. Learn from one of the most reliable programmers alive and expert in the field You do not want to miss out on this incredible offer!
Download or read book Python Programming and Machine Learning with Python written by William Sullivan and published by Createspace Independent Publishing Platform. This book was released on 2018-08-16 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Best Starter Pack Illustrated Guide For Beginners & Intermediates : The Future Is Here! 2 Manuscripts in 1 Book Python Programming & Machine Learning With Python: 2 Manuscripts in 1 Book Best Starter Pack Illustrated Guide For Beginners & Intermediates : The Future Is Here! If your new to computer programming or want to brush up this ultimate guide that combines aspects of machine learning and python programming for beginners & intermediates is just for you! What You'll Learn... Python Running Your First Program Identifiers Variables Data Types Codes Linear & Polynomial Regression Support Vector Machines Decision Trees Random Forest KNN Algorithm Naive Bayes Algorithm Unsupervised Learning Clustering Cross Validation Grid Search And, much, much more! You get so much value in one bundle packed book! Make the greatest investment in yourself by investing in your knowledge. Buy Your Copy Now!
Download or read book Ultimate Step by Step Guide to Machine Learning Using Python written by Daneyal Anis and published by . This book was released on 2020-02-17 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: *Start your Data Science career using Python today!* Are you ready to start your new exciting career? Ready to crush your machine learning career goals? Are you overwhelmed with complexity of the books on this subject?Then let this breezy and fun little book on Python and machine learning models make you a data scientist in 7 days! First part of this book introduces Python basics including: 1) Data Structures like Pandas 2) Foundational libraries like Numpy, Seaborn and Scikit-Learn Second part of this book shows you how to build predictive machine learning models step by step using techniques such as: 1) Regression analysis 2) Decision tree analysis 3) Training and testing data models 4) And much more! After reading this book you will be able to: 1) Code in Python with confidence 2) Build new machine learning models from scratch 3) Know how to clean and prepare your data for analytics 4) Speak confidently about statistical analysis techniques Data Science was ranked the fast-growing field by LinkedIn and Data Scientist is one of the most highly sought after and lucrative careers in the world! If you are on the fence about making the leap to a new and lucrative career, this is the book for you! What sets this book apart from other books on the topic of Python and Machine learning: 1) Step by step code examples and explanation 2) Complex concepts explained visually 3) Real world applicability of the machine learning models introduced 4) Bonus free code samples that you can try yourself without any prior experience in Python! What do I need to get started? You will have a step by step action plan in place once you finish this book and finally feel that you, can master data science and machine learning and start lucrative and rewarding career! Ready to dive in to the exciting world of Python and Machine Learning? Then scroll up to the top and hit that BUY BUTTON!
Download or read book Artificial Intelligence and Soft Computing written by Leszek Rutkowski and published by Springer Nature. This book was released on 2023-09-13 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume set LNAI 14125 and 14126 constitutes the refereed conference proceedings of the 22nd International Conference on Artificial Intelligence and Soft Computing, ICAISC 2023, held in Zakopane, Poland, during June 18–22, 2023. The 84 revised full papers presented in these proceedings were carefully reviewed and selected from 175 submissions. The papers are organized in the following topical sections: Part I: Neural Networks and Their Applications; Evolutionary Algorithms and Their Applications; and Artificial Intelligence in Modeling and Simulation. Part II: Computer Vision, Image and Speech Analysis; Various Problems of Artificial Intelligence; Bioinformatics, Biometrics and Medical Applications; and Data Mining and Pateern Classification.
Download or read book Python Machine Learning written by Ryan Turner and published by Publishing Factory . This book was released on 2020-04-18 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Are you a novice programmer who wants to learn Python Machine Learning? Are you worried about how to translate what you already know into Python? This book will help you overcome those problems! As machines get ever more complex and perform more and more tasks to free up our time, so it is that new ideas are developed to help us continually improve their speed and abilities. One of these is Python and in Python Machine Learning: 3 books in 1 - The Ultimate Beginner's Guide to Learn Python Machine Learning Step by Step using Scikit-Learn and Tensorflow, you will discover information and advice on: Book 1 • What machine learning is • The history of machine learning • Approaches to machine learning • Support vector machines • Machine learning and neural networks • The Internet of Things (IoT) • The future of machine learning • And more… Book 2 • The principles surrounding Python • Different types of networks so you can choose what works best for you • Features of the system • Real world feature engineering • Understanding the techniques of semi-supervised learning • And more… Book 3 • How advanced tensorflow can be used • Neural network models and how to get the most from them • Machine learning with Generative Adversarial Networks • Translating images with cross domain GANs • TF clusters and how to use them • How to debug TF models • And more… This book has been written specifically for beginners and the simple, step by step instructions and plain language make it an ideal place to start for anyone who has a passing interest in this fascinating subject. Python really is an amazing system and can provide you with endless possibilities when you start learning about it. Get a copy of Python Machine Learning today and see where the future lies.
Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance
Download or read book Treading on Python Volume 2 written by Matt Harrison and published by Matt Harrison. This book was released on 2013-06-23 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Do you want to take your Python to the next level? Python is easy to learn. You can learn the basics in a day and be productive with it. But there are more advanced constructs that you will eventually run across if you spend enough time with it. Don't be confused by these. Learn them, embrace them, and improve your code and others.
Download or read book Introducing Python written by Bill Lubanovic and published by "O'Reilly Media, Inc.". This book was released on 2019-11-06 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Easy to understand and fun to read, this updated edition of Introducing Python is ideal for beginning programmers as well as those new to the language. Author Bill Lubanovic takes you from the basics to more involved and varied topics, mixing tutorials with cookbook-style code recipes to explain concepts in Python 3. End-of-chapter exercises help you practice what you’ve learned. You’ll gain a strong foundation in the language, including best practices for testing, debugging, code reuse, and other development tips. This book also shows you how to use Python for applications in business, science, and the arts, using various Python tools and open source packages.
Download or read book PyTorch 1 x Reinforcement Learning Cookbook written by Yuxi (Hayden) Liu and published by Packt Publishing Ltd. This book was released on 2019-10-31 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement reinforcement learning techniques and algorithms with the help of real-world examples and recipes Key FeaturesUse PyTorch 1.x to design and build self-learning artificial intelligence (AI) modelsImplement RL algorithms to solve control and optimization challenges faced by data scientists todayApply modern RL libraries to simulate a controlled environment for your projectsBook Description Reinforcement learning (RL) is a branch of machine learning that has gained popularity in recent times. It allows you to train AI models that learn from their own actions and optimize their behavior. PyTorch has also emerged as the preferred tool for training RL models because of its efficiency and ease of use. With this book, you'll explore the important RL concepts and the implementation of algorithms in PyTorch 1.x. The recipes in the book, along with real-world examples, will help you master various RL techniques, such as dynamic programming, Monte Carlo simulations, temporal difference, and Q-learning. You'll also gain insights into industry-specific applications of these techniques. Later chapters will guide you through solving problems such as the multi-armed bandit problem and the cartpole problem using the multi-armed bandit algorithm and function approximation. You'll also learn how to use Deep Q-Networks to complete Atari games, along with how to effectively implement policy gradients. Finally, you'll discover how RL techniques are applied to Blackjack, Gridworld environments, internet advertising, and the Flappy Bird game. By the end of this book, you'll have developed the skills you need to implement popular RL algorithms and use RL techniques to solve real-world problems. What you will learnUse Q-learning and the state–action–reward–state–action (SARSA) algorithm to solve various Gridworld problemsDevelop a multi-armed bandit algorithm to optimize display advertisingScale up learning and control processes using Deep Q-NetworksSimulate Markov Decision Processes, OpenAI Gym environments, and other common control problemsSelect and build RL models, evaluate their performance, and optimize and deploy themUse policy gradient methods to solve continuous RL problemsWho this book is for Machine learning engineers, data scientists and AI researchers looking for quick solutions to different reinforcement learning problems will find this book useful. Although prior knowledge of machine learning concepts is required, experience with PyTorch will be useful but not necessary.
Download or read book Python written by Brady Ellison and published by . This book was released on with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: THIS BOOK INCLUDES : Python for Beginners: A crash course to learn Python Programming in 1 Week Python for Data Analysis: A Beginners Guide to Master the Fundamentals of Data Science and Data Analysis by Using Pandas, Numpy and Ipython Python Machine Learning: A Step by Step Beginner’s Guide to Learn Machine Learning Using Python Here's what you'll learn through this book: Python for Beginners In this book You will learn: Getting started with the basics Statements, Comments, Variables, Index Data Types: Strings and Numbers Data Types: List and Tuple Data Types: Set and Dictionary Operators Functions Loops Python Practice Projects and much more Python for Data Analysis In this book You will learn: Data Science/Analysis and its applications IPython and Jupyter - an introduction to the basic tools and how to navigate and use them. You will also learn about its importance in a data scientist’s ecosystem. Pandas - a powerful data management Python library that lets you do interesting things with data. You will learn all the basics you need to get started. NumPy - a powerful numerical library for Python. You will learn more about its advantages. Python Machine Learning The Topics Covered Include: Machine learning fundamentals How to set up the development environment How to use Python libraries and modules like Scikit-learn, TensorFlow, Matplotlib, and NumPy How to explore data How to solve regression and classification problems Decision trees k-means clustering Feed-forward and recurrent neural networks Get your copy now!