Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Download or read book Python Developer s Handbook written by André dos Santos Lessa and published by Sams Publishing. This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Python Developer's Handbook" offers experienced developers the knowledge to fully develop their skills as a Python programmer. The material focuses exclusively on the specific topic at hand and avoids general programming topics, except where unique concerns are encountered.
Download or read book Python for Mechanical and Aerospace Engineering written by Alex Kenan and published by Alex Kenan. This book was released on 2021-01-01 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The traditional computer science courses for engineering focus on the fundamentals of programming without demonstrating the wide array of practical applications for fields outside of computer science. Thus, the mindset of “Java/Python is for computer science people or programmers, and MATLAB is for engineering” develops. MATLAB tends to dominate the engineering space because it is viewed as a batteries-included software kit that is focused on functional programming. Everything in MATLAB is some sort of array, and it lends itself to engineering integration with its toolkits like Simulink and other add-ins. The downside of MATLAB is that it is proprietary software, the license is expensive to purchase, and it is more limited than Python for doing tasks besides calculating or data capturing. This book is about the Python programming language. Specifically, it is about Python in the context of mechanical and aerospace engineering. Did you know that Python can be used to model a satellite orbiting the Earth? You can find the completed programs and a very helpful 595 page NSA Python tutorial at the book’s GitHub page at https://www.github.com/alexkenan/pymae. Read more about the book, including a sample part of Chapter 5, at https://pymae.github.io
Download or read book The Quick Python Book written by Vernon L. Ceder and published by Manning Publications Company. This book was released on 2010 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the programming language's syntax, control flow, and basic data structures and covers its interaction with applications and mangement of large collections of code.
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Download or read book Python Recipes Handbook written by Joey Bernard and published by Apress. This book was released on 2016-11-08 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the code to write algorithms, numerical computations, data analysis and much more using the Python language: look up and re-use the recipes for your own Python coding. This book is your handy code cookbook reference. Whether you're a maker, game developer, cloud computing programmer and more, this is a must-have reference for your library. Python Recipes Handbook gives you the most common and contemporary code snippets, using pandas (Python Data Analysis Library), NumPy, and other numerical Python packages. What You'll Learn Code with the pandas (Python Data Analysis Library) Work with the various Python algorithms useful for today's big data analytics and cloud applications Use NumPy and other numerical Python packages and code for doing various kinds of analysis Discover Python's new popular modules, packages, extensions and templates library Who This Book Is For This handy reference is for those with some experience with Python.
Download or read book The Python Book written by Rob Mastrodomenico and published by John Wiley & Sons. This book was released on 2022-01-13 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Python Book Discover the power of one of the fastest growing programming languages in the world with this insightful new resource The Python Book delivers an essential introductory guide to learning Python for anyone who works with data but does not have experience in programming. The author, an experienced data scientist and Python programmer, shows readers how to use Python for data analysis, exploration, cleaning, and wrangling. Readers will learn what in the Python language is important for data analysis, and why. The Python Book offers readers a thorough and comprehensive introduction to Python that is both simple enough to be ideal for a novice programmer, yet robust to be useful for those more experienced in the language. The book assists budding programmers to gradually increase their skills as they move through the book, always with an understanding of what they are covering and why it is useful. Used by major companies like Google, Facebook, Instagram, Spotify, and more, Python promises to remain central to the programming landscape for years to come. Containing a thorough discussion of Python programming topics like variables, equalities and comparisons, tuple and dictionary data types, while and for loops, and if statements, readers will also learn: How to use highly useful Python programming libraries, including Pandas and Matplotlib How to write Python functions and classes How to write and use Python scripts To deal with different data types within Python Perfect for statisticians, computer scientists, software programmers, and practitioners working in private industry and medicine, The Python Book will also be of interest to students in any of the aforementioned fields. As it assumes no programming experience or knowledge, the book is ideal for those who work with data and want to learn to use Python to enhance their work.
Download or read book Learning Python written by Mark Lutz and published by "O'Reilly Media, Inc.". This book was released on 2007-10-22 with total page 749 pages. Available in PDF, EPUB and Kindle. Book excerpt: Portable, powerful, and a breeze to use, Python is ideal for both standalone programs and scripting applications. With this hands-on book, you can master the fundamentals of the core Python language quickly and efficiently, whether you're new to programming or just new to Python. Once you finish, you will know enough about the language to use it in any application domain you choose. Learning Python is based on material from author Mark Lutz's popular training courses, which he's taught over the past decade. Each chapter is a self-contained lesson that helps you thoroughly understand a key component of Python before you continue. Along with plenty of annotated examples, illustrations, and chapter summaries, every chapter also contains Brain Builder, a unique section with practical exercises and review quizzes that let you practice new skills and test your understanding as you go. This book covers: Types and Operations -- Python's major built-in object types in depth: numbers, lists, dictionaries, and more Statements and Syntax -- the code you type to create and process objects in Python, along with Python's general syntax model Functions -- Python's basic procedural tool for structuring and reusing code Modules -- packages of statements, functions, and other tools organized into larger components Classes and OOP -- Python's optional object-oriented programming tool for structuring code for customization and reuse Exceptions and Tools -- exception handling model and statements, plus a look at development tools for writing larger programs Learning Python gives you a deep and complete understanding of the language that will help you comprehend any application-level examples of Python that you later encounter. If you're ready to discover what Google and YouTube see in Python, this book is the best way to get started.
Download or read book Python for Excel written by Felix Zumstein and published by "O'Reilly Media, Inc.". This book was released on 2021-03-04 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: While Excel remains ubiquitous in the business world, recent Microsoft feedback forums are full of requests to include Python as an Excel scripting language. In fact, it's the top feature requested. What makes this combination so compelling? In this hands-on guide, Felix Zumstein--creator of xlwings, a popular open source package for automating Excel with Python--shows experienced Excel users how to integrate these two worlds efficiently. Excel has added quite a few new capabilities over the past couple of years, but its automation language, VBA, stopped evolving a long time ago. Many Excel power users have already adopted Python for daily automation tasks. This guide gets you started. Use Python without extensive programming knowledge Get started with modern tools, including Jupyter notebooks and Visual Studio code Use pandas to acquire, clean, and analyze data and replace typical Excel calculations Automate tedious tasks like consolidation of Excel workbooks and production of Excel reports Use xlwings to build interactive Excel tools that use Python as a calculation engine Connect Excel to databases and CSV files and fetch data from the internet using Python code Use Python as a single tool to replace VBA, Power Query, and Power Pivot
Download or read book Python Tutorial 3 11 3 written by Guido Van Rossum and published by . This book was released on 2023-05-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Computer Programming with Python written by Dimitrios Xanthidis and published by CRC Press. This book was released on 2022-12-12 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides a hands-on experience based on the underlying topics, and assists students and faculty members in developing their algorithmic thought process and programs for given computational problems. It can also be used by professionals who possess the necessary theoretical and computational thinking background but are presently making their transition to Python. Key Features: Discusses concepts such as basic programming principles, OOP principles, database programming, GUI programming, application development, data analytics and visualization, statistical analysis, virtual reality, data structures and algorithms, machine learning, and deep learning Provides the code and the output for all the concepts discussed Includes a case study at the end of each chapter This handbook will benefit students of computer science, information systems, and information technology, or anyone who is involved in computer programming (entry-to-intermediate level), data analytics, HCI-GUI, and related disciplines.
Download or read book Python Packages written by Tomas Beuzen and published by CRC Press. This book was released on 2022-04-20 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python Packages introduces Python packaging at an introductory and practical level that’s suitable for those with no previous packaging experience. Despite this, the text builds up to advanced topics such as automated testing, creating documentation, versioning and updating a package, and implementing continuous integration and deployment. Covering the entire Python packaging life cycle, this essential guide takes readers from package creation all the way to effective maintenance and updating. Python Packages focuses on the use of current and best-practice packaging tools and services like poetry, cookiecutter, pytest, sphinx, GitHub, and GitHub Actions. Features: The book’s source code is available online as a GitHub repository where it is collaborated on, automatically tested, and built in real time as changes are made; demonstrating the use of good reproducible and clear project workflows. Covers not just the process of creating a package, but also how to document it, test it, publish it to the Python Package Index (PyPI), and how to properly version and update it. All concepts in the book are demonstrated using examples. Readers can follow along, creating their own Python packages using the reproducible code provided in the text. Focuses on a modern approach to Python packaging with emphasis on automating and streamlining the packaging process using new and emerging tools such as poetry and GitHub Actions.
Download or read book Python Handbook written by Kaiching Chang and published by Kaiching Chang. This book was released on 2024-08-23 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a simplified guide to the official Python documentation, featuring practical, executable examples. In other words, this book significantly simplifies the verbose official Python documentation, making it easier for beginners to grasp the concepts, hence its name: Python Handbook. This book consists of 72 units, covering the basic content of Python 3.12, with each unit concluding with a link to the official Python documentation for further reading. Kaiching Chang 6/19/2024
Download or read book Python Programming written by John M. Zelle and published by Franklin, Beedle & Associates, Inc.. This book was released on 2004 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is suitable for use in a university-level first course in computing (CS1), as well as the increasingly popular course known as CS0. It is difficult for many students to master basic concepts in computer science and programming. A large portion of the confusion can be blamed on the complexity of the tools and materials that are traditionally used to teach CS1 and CS2. This textbook was written with a single overarching goal: to present the core concepts of computer science as simply as possible without being simplistic.
Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.
Download or read book Python Object Oriented Programming written by Steven F. Lott and published by Packt Publishing Ltd. This book was released on 2021-07-02 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to exploring modern Python through data structures, design patterns, and effective object-oriented techniques Key Features Build an intuitive understanding of object-oriented design, from introductory to mature programs Learn the ins and outs of Python syntax, libraries, and best practices Examine a machine-learning case study at the end of each chapter Book Description Object-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Python Object-Oriented Programming, Fourth Edition dives deep into the various aspects of OOP, Python as an OOP language, common and advanced design patterns, and hands-on data manipulation and testing of more complex OOP systems. These concepts are consolidated by open-ended exercises, as well as a real-world case study at the end of every chapter, newly written for this edition. All example code is now compatible with Python 3.9+ syntax and has been updated with type hints for ease of learning. Steven and Dusty provide a comprehensive, illustrative tour of important OOP concepts, such as inheritance, composition, and polymorphism, and explain how they work together with Python's classes and data structures to facilitate good design. In addition, the book also features an in-depth look at Python's exception handling and how functional programming intersects with OOP. Two very powerful automated testing systems, unittest and pytest, are introduced. The final chapter provides a detailed discussion of Python's concurrent programming ecosystem. By the end of the book, you will have a thorough understanding of how to think about and apply object-oriented principles using Python syntax and be able to confidently create robust and reliable programs. What you will learn Implement objects in Python by creating classes and defining methods Extend class functionality using inheritance Use exceptions to handle unusual situations cleanly Understand when to use object-oriented features, and more importantly, when not to use them Discover several widely used design patterns and how they are implemented in Python Uncover the simplicity of unit and integration testing and understand why they are so important Learn to statically type check your dynamic code Understand concurrency with asyncio and how it speeds up programs Who this book is for If you are new to object-oriented programming techniques, or if you have basic Python skills and wish to learn how and when to correctly apply OOP principles in Python, this is the book for you. Moreover, if you are an object-oriented programmer coming from other languages or seeking a leg up in the new world of Python, you will find this book a useful introduction to Python. Minimal previous experience with Python is necessary.
Download or read book Introduction to Computation and Programming Using Python second edition written by John V. Guttag and published by MIT Press. This book was released on 2016-08-12 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.