Download or read book Pseudo Limits Biadjoints and Pseudo Algebras Categorical Foundations of Conformal Field Theory written by Thomas M. Fiore and published by American Mathematical Soc.. This book was released on 2006 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper we develop the categorical foundations needed for working out completely the rigorous approach to the definition of conformal field theory outlined by Graeme Segal. We discuss pseudo algebras over theories and 2-theories, their pseudo morphisms, bilimits, bicolimits, biadjoints, stacks, and related concepts. These 2-categorical concepts are used to describe the algebraic structure on the class of rigged surfaces. A rigged surface is a real, compact, not necessarilyconnected, two dimensional manifold with complex structure and analytically parametrized boundary components. This class admits algebraic operations of disjoint union and gluing as well as a unit. These operations satisfy axioms such as unitality and distributivity up to coherence isomorphisms whichsatisfy coherence diagrams. These operations, coherences, and their diagrams are neatly encoded as a pseudo algebra over the 2-theory of commutative monoids with cancellation. A conformal field theory is a morphism of stacks of such structures. This paper begins with a review of 2-categorical concepts, Lawvere theories, and algebras over Lawvere theories. We prove that the 2-category of small pseudo algebras over a theory admits weighted pseudo limits and weighted bicolimits. This 2-category isbiequivalent to the 2-category of algebras over a 2-monad with pseudo morphisms. We prove that a pseudo functor admits a left biadjoint if and only if it admits certain biuniversal arrows. An application of this theorem implies that the forgetful 2-functor for pseudo algebras admits a leftbiadjoint. We introduce stacks for Grothendieck topologies and prove that the traditional definition of stacks in terms of descent data is equivalent to our definition via bilimits. The paper ends with a proof that the 2-category of pseudo algebras over a 2-theory admits weighted pseudo limits. This result is relevant to the definition of conformal field theory because bilimits are necessary to speak of stacks.
Download or read book Pseudo Limits Biadjoints and Pseudo Algebras written by Thomas M. Fiore and published by American Mathematical Society(RI). This book was released on 2014-09-11 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we develop the categorical foundations needed for working out completely the rigorous approach to the definition of conformal field theory outlined by Graeme Segal. We discuss pseudo algebras over theories and 2-theories, their pseudo morphisms, bilimits, bicolimits, biadjoints, stacks, and related concepts. These 2-categorical concepts are used to describe the algebraic structure on the class of rigged surfaces. A rigged surface is a real, compact, not necessarily connected, two dimensional manifold with complex structure and analytically parametrized boundary components. This class admits algebraic operations of disjoint union and gluing as well as a unit. These operations satisfy axioms such as unitality and distributivity up to coherence isomorphisms which satisfy coherence diagrams. These operations, coherences, and their diagrams are neatly encoded as a pseudo algebra over the 2-theory of commutative monoids with cancellation.
Download or read book Limit Theorems of Polynomial Approximation with Exponential Weights written by Michael I. Ganzburg and published by American Mathematical Soc.. This book was released on 2008 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author develops the limit relations between the errors of polynomial approximation in weighted metrics and apply them to various problems in approximation theory such as asymptotically best constants, convergence of polynomials, approximation of individual functions, and multidimensional limit theorems of polynomial approximation.
Download or read book Towards Higher Categories written by John C. Baez and published by Springer Science & Business Media. This book was released on 2009-09-23 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications TOWARDS HIGHER CATEGORIES contains expository and research papers based on a highly successful IMA Summer Program on n-Categories: Foundations and Applications. We are grateful to all the participants for making this occasion a very productive and stimulating one. We would like to thank John C. Baez (Department of Mathematics, University of California Riverside) and J. Peter May (Department of Ma- ematics, University of Chicago) for their superb role as summer program organizers and editors of this volume. We take this opportunity to thank the National Science Foundation for its support of the IMA. Series Editors Fadil Santosa, Director of the IMA Markus Keel, Deputy Director of the IMA v PREFACE DEDICATED TO MAX KELLY, JUNE 5 1930 TO JANUARY 26 2007. This is not a proceedings of the 2004 conference “n-Categories: Fo- dations and Applications” that we organized and ran at the IMA during the two weeks June 7–18, 2004! We thank all the participants for helping make that a vibrant and inspiring occasion. We also thank the IMA sta? for a magni?cent job. There has been a great deal of work in higher c- egory theory since then, but we still feel that it is not yet time to o?er a volume devoted to the main topic of the conference.
Download or read book Algebra and Coalgebra in Computer Science written by Alexander Kurz and published by Springer Science & Business Media. This book was released on 2009-08-28 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the Third International Conference on Algebra and Coalgebra in Computer Science, CALCO 2009, formed in 2005 by joining CMCS and WADT. This year the conference was held in Udine, Italy, September 7-10, 2009. The 23 full papers were carefully reviewed and selected from 42 submissions. They are presented together with four invited talks and workshop papers from the CALCO-tools Workshop. The conference was divided into the following sessions: algebraic effects and recursive equations, theory of coalgebra, coinduction, bisimulation, stone duality, game theory, graph transformation, and software development techniques.
Download or read book Semisolvability of Semisimple Hopf Algebras of Low Dimension written by Sonia Natale and published by American Mathematical Soc.. This book was released on 2007 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author proves that every semisimple Hopf algebra of dimension less than $60$ over an algebraically closed field $k$ of characteristic zero is either upper or lower semisolvable up to a cocycle twist.
Download or read book The Hilbert Function of a Level Algebra written by A. V. Geramita and published by American Mathematical Soc.. This book was released on 2007 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let $R$ be a polynomial ring over an algebraically closed field and let $A$ be a standard graded Cohen-Macaulay quotient of $R$. The authors state that $A$ is a level algebra if the last module in the minimal free resolution of $A$ (as $R$-module) is of the form $R(-s)a$, where $s$ and $a$ are positive integers. When $a=1$ these are also known as Gorenstein algebras. The basic question addressed in this paper is: What can be the Hilbert Function of a level algebra? The authors consider the question in several particular cases, e.g., when $A$ is an Artinian algebra, or when $A$ is the homogeneous coordinate ring of a reduced set of points, or when $A$ satisfies the Weak Lefschetz Property. The authors give new methods for showing that certain functions are NOT possible as the Hilbert function of a level algebra and also give new methods to construct level algebras. In a (rather long) appendix, the authors apply their results to give complete lists of all possible Hilbert functions in the case that the codimension of $A = 3$, $s$ is small and $a$ takes on certain fixed values.
Download or read book Invariant Means and Finite Representation Theory of C Algebras written by Nathanial Patrick Brown and published by American Mathematical Soc.. This book was released on 2006 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various subsets of the tracial state space of a unital C$*$-algebra are studied. The largest of these subsets has a natural interpretation as the space of invariant means. II$ 1$-factor representations of a class of C$*$-algebras considered by Sorin Popa are also studied. These algebras are shown to have an unexpected variety of II$ 1$-factor representations. In addition to developing some general theory we also show that these ideas are related to numerous other problems inoperator algebras.
Download or read book Pseudo Limits Bi adjoints and Pseudo Algebras written by Thomas M. Fiore and published by . This book was released on 2005 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book 2 Dimensional Categories written by Niles Johnson and published by Oxford University Press, USA. This book was released on 2021-01-31 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2-Dimensional Categories is an introduction to 2-categories and bicategories, assuming only the most elementary aspects of category theory.
Download or read book Monoidal Category Theory written by Noson S. Yanofsky and published by MIT Press. This book was released on 2024-11-05 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, cutting-edge, and highly readable textbook that makes category theory and monoidal category theory accessible to students across the sciences. Category theory is a powerful framework that began in mathematics but has since expanded to encompass several areas of computing and science, with broad applications in many fields. In this comprehensive text, Noson Yanofsky makes category theory accessible to those without a background in advanced mathematics. Monoidal Category Theorydemonstrates the expansive uses of categories, and in particular monoidal categories, throughout the sciences. The textbook starts from the basics of category theory and progresses to cutting edge research. Each idea is defined in simple terms and then brought alive by many real-world examples before progressing to theorems and uncomplicated proofs. Richly guided exercises ground readers in concrete computation and application. The result is a highly readable and engaging textbook that will open the world of category theory to many. Makes category theory accessible to non-math majors Uses easy-to-understand language and emphasizes diagrams over equations Incremental, iterative approach eases students into advanced concepts A series of embedded mini-courses cover such popular topics as quantum computing, categorical logic, self-referential paradoxes, databases and scheduling, and knot theory Extensive exercises and examples demonstrate the broad range of applications of categorical structures Modular structure allows instructors to fit text to the needs of different courses Instructor resources include slides
Download or read book Homotopy Theory of Higher Categories written by Carlos Simpson and published by Cambridge University Press. This book was released on 2011-10-20 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others.
Download or read book Deformation Spaces written by Hossein Abbaspour and published by Springer Science & Business Media. This book was released on 2010-04-21 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first instances of deformation theory were given by Kodaira and Spencer for complex structures and by Gerstenhaber for associative algebras. Since then, deformation theory has been applied as a useful tool in the study of many other mathematical structures, and even today it plays an important role in many developments of modern mathematics. This volume collects a few self-contained and peer-reviewed papers by experts which present up-to-date research topics in algebraic and motivic topology, quantum field theory, algebraic geometry, noncommutative geometry and the deformation theory of Poisson algebras. They originate from activities at the Max-Planck-Institute for Mathematics and the Hausdorff Center for Mathematics in Bonn.
Download or read book Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls written by Nicola Arcozzi and published by American Mathematical Soc.. This book was released on 2006 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: A tree structure for the unit ball $mathbb B? n$ in $mathbb C'n$; Carleson measures; Pointwise multipliers; Interpolating sequences; An almost invariant holomorphic derivative; Besov spaces on trees; Holomorphic Besov spaces on Bergman trees; Completing the multiplier interpolation loop; Appendix; Bibliography
Download or read book Flat Level Set Regularity of p Laplace Phase Transitions written by Enrico Valdinoci and published by American Mathematical Soc.. This book was released on 2006 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: We prove a Harnack inequality for level sets of $p$-Laplace phase transition minimizers. In particular, if a level set is included in a flat cylinder, then, in the interior, it is included in a flatter one. The extension of a result conjectured by De Giorgi and recently proven by the third author for $p=2$ follows.
Download or read book Non Doubling Ahlfors Measures Perimeter Measures and the Characterization of the Trace Spaces of Sobolev Functions in Carnot Caratheodory Spaces written by Donatella Danielli and published by American Mathematical Soc.. This book was released on 2006 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The object of the present study is to characterize the traces of the Sobolev functions in a sub-Riemannian, or Carnot-Caratheodory space. Such traces are defined in terms of suitable Besov spaces with respect to a measure which is concentrated on a lower dimensional manifold, and which satisfies an Ahlfors type condition with respect to the standard Lebesgue measure. We also study the extension problem for the relevant Besov spaces. Various concrete applications to the setting of Carnot groups are analyzed in detail and an application to the solvability of the subelliptic Neumann problem is presented.
Download or read book Complicial Sets Characterising the Simplicial Nerves of Strict omega Categories written by Dominic Verity and published by American Mathematical Soc.. This book was released on 2008 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary purpose of this work is to characterise strict $\omega$-categories as simplicial sets with structure. The author proves the Street-Roberts conjecture in the form formulated by Ross Street in his work on Orientals, which states that they are exactly the ``complicial sets'' defined and named by John Roberts in his handwritten notes of that title (circa 1978). On the way the author substantially develops Roberts' theory of complicial sets itself and makes contributions to Street's theory of parity complexes. In particular, he studies a new monoidal closed structure on the category of complicial sets which he shows to be the appropriate generalisation of the (lax) Gray tensor product of 2-categories to this context. Under Street's $\omega$-categorical nerve construction, which the author shows to be an equivalence, this tensor product coincides with those of Steiner, Crans and others.