EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Provable Algorithms for Scalable and Robust Low rank Matrix Recovery

Download or read book Provable Algorithms for Scalable and Robust Low rank Matrix Recovery written by Yuanxin Li (Ph. D. in electrical and computer engineering) and published by . This book was released on 2018 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-rank models are ubiquitous in a wide range of practical applications, and low-rank matrix sensing and recovery has become a problem of great importance. Via leveraging the low-rank structure in data representations, it is possible to faithfully recover the matrix of interest from incomplete observations, in both statistically and computationally efficient manners. This dissertation investigates the fundamental problem of low-rank matrix recovery in different random measurement models, possibly with corruptions.

Book Handbook of Robust Low Rank and Sparse Matrix Decomposition

Download or read book Handbook of Robust Low Rank and Sparse Matrix Decomposition written by Thierry Bouwmans and published by CRC Press. This book was released on 2016-09-20 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Book Handbook of Robust Low Rank and Sparse Matrix Decomposition

Download or read book Handbook of Robust Low Rank and Sparse Matrix Decomposition written by Thierry Bouwmans and published by CRC Press. This book was released on 2016-05-27 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing shows you how robust subspace learning and tracking by decomposition into low-rank and sparse matrices provide a suitable framework for computer vision applications. Incorporating both existing and new ideas, the book conveniently gives you one-stop access to a number of different decompositions, algorithms, implementations, and benchmarking techniques. Divided into five parts, the book begins with an overall introduction to robust principal component analysis (PCA) via decomposition into low-rank and sparse matrices. The second part addresses robust matrix factorization/completion problems while the third part focuses on robust online subspace estimation, learning, and tracking. Covering applications in image and video processing, the fourth part discusses image analysis, image denoising, motion saliency detection, video coding, key frame extraction, and hyperspectral video processing. The final part presents resources and applications in background/foreground separation for video surveillance. With contributions from leading teams around the world, this handbook provides a complete overview of the concepts, theories, algorithms, and applications related to robust low-rank and sparse matrix decompositions. It is designed for researchers, developers, and graduate students in computer vision, image and video processing, real-time architecture, machine learning, and data mining.

Book Generalized Low Rank Models

Download or read book Generalized Low Rank Models written by Madeleine Udell and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. This dissertation extends the idea of PCA to handle arbitrary data sets consisting of numerical, Boolean, categorical, ordinal, and other data types. This framework encompasses many well known techniques in data analysis, such as nonnegative matrix factorization, matrix completion, sparse and robust PCA, k-means, k-SVD, and maximum margin matrix factorization. The method handles heterogeneous data sets, and leads to coherent schemes for compressing, denoising, and imputing missing entries across all data types simultaneously. It also admits a number of interesting interpretations of the low rank factors, which allow clustering of examples or of features. We propose several parallel algorithms for fitting generalized low rank models, and describe implementations and numerical results.

Book Robust Algorithms on Low rank Approximation and Their Applications

Download or read book Robust Algorithms on Low rank Approximation and Their Applications written by Ningyu Sha and published by . This book was released on 2021 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Low-rank approximation models have been widely developed in computer vision, image analysis, signal processing, web data analysis, bioinformatics, etc. Generally, we assume that the intrinsic data lies in a low-dimensional subspace, and we need to extract the low-rank representation given observations. There are many well-known works such as Principal Component Analysis (PCA), factor analysis, least squares, etc. However, their performance may be affected when dealing with outliers. Robust PCA (RPCA) plays an important role in such cases, but RPCA based methods suffer from expensive computation costs. In this thesis, we discussed how to improve the performance of RPCA in terms of both speed and accuracy. The comparison between convex and non-convex models is also discussed. Notably, we propose a theory about matrix decomposition with unknown rank. A nonlinear RPCA approach is also proposed, given the assumption that data lie on a manifold. Then, we take examples from seismic event detection and 2D image denoising. The numerical experiments show the robustness of our techniques and present speedup and higher recovery accuracy compared with existing approaches. It is usually common in practice that observed data has missing values. So, we need to make a low-rank approximation based on incomplete data. Also, it may take a long time for offline matrix completion since we need to collect all data first. The online version can offer up-to-date results based on a continuous data stream. Online matrix completion has applications in computer vision and web data analysis, especially in video image transmission and recommendation systems. To be better applied on color images with three channels, we introduced online quaternion matrix completion. We can get an updated result for every new observed entry using stochastic gradient descent on the quaternion matrix.

Book Neural Networks and Statistical Learning

Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Nature. This book was released on 2019-09-12 with total page 988 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad yet detailed introduction to neural networks and machine learning in a statistical framework. A single, comprehensive resource for study and further research, it explores the major popular neural network models and statistical learning approaches with examples and exercises and allows readers to gain a practical working understanding of the content. This updated new edition presents recently published results and includes six new chapters that correspond to the recent advances in computational learning theory, sparse coding, deep learning, big data and cloud computing. Each chapter features state-of-the-art descriptions and significant research findings. The topics covered include: • multilayer perceptron; • the Hopfield network; • associative memory models;• clustering models and algorithms; • t he radial basis function network; • recurrent neural networks; • nonnegative matrix factorization; • independent component analysis; •probabilistic and Bayesian networks; and • fuzzy sets and logic. Focusing on the prominent accomplishments and their practical aspects, this book provides academic and technical staff, as well as graduate students and researchers with a solid foundation and comprehensive reference on the fields of neural networks, pattern recognition, signal processing, and machine learning.

Book Tensors for Data Processing

Download or read book Tensors for Data Processing written by Yipeng Liu and published by Academic Press. This book was released on 2021-10-21 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensors for Data Processing: Theory, Methods and Applications presents both classical and state-of-the-art methods on tensor computation for data processing, covering computation theories, processing methods, computing and engineering applications, with an emphasis on techniques for data processing. This reference is ideal for students, researchers and industry developers who want to understand and use tensor-based data processing theories and methods. As a higher-order generalization of a matrix, tensor-based processing can avoid multi-linear data structure loss that occurs in classical matrix-based data processing methods. This move from matrix to tensors is beneficial for many diverse application areas, including signal processing, computer science, acoustics, neuroscience, communication, medical engineering, seismology, psychometric, chemometrics, biometric, quantum physics and quantum chemistry. - Provides a complete reference on classical and state-of-the-art tensor-based methods for data processing - Includes a wide range of applications from different disciplines - Gives guidance for their application

Book Spectral Algorithms

    Book Details:
  • Author : Ravindran Kannan
  • Publisher : Now Publishers Inc
  • Release : 2009
  • ISBN : 1601982747
  • Pages : 153 pages

Download or read book Spectral Algorithms written by Ravindran Kannan and published by Now Publishers Inc. This book was released on 2009 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral methods refer to the use of eigenvalues, eigenvectors, singular values and singular vectors. They are widely used in Engineering, Applied Mathematics and Statistics. More recently, spectral methods have found numerous applications in Computer Science to "discrete" as well as "continuous" problems. Spectral Algorithms describes modern applications of spectral methods, and novel algorithms for estimating spectral parameters. The first part of the book presents applications of spectral methods to problems from a variety of topics including combinatorial optimization, learning and clustering. The second part of the book is motivated by efficiency considerations. A feature of many modern applications is the massive amount of input data. While sophisticated algorithms for matrix computations have been developed over a century, a more recent development is algorithms based on "sampling on the fly" from massive matrices. Good estimates of singular values and low rank approximations of the whole matrix can be provably derived from a sample. The main emphasis in the second part of the book is to present these sampling methods with rigorous error bounds. It also presents recent extensions of spectral methods from matrices to tensors and their applications to some combinatorial optimization problems.

Book Algorithmic Aspects of Machine Learning

Download or read book Algorithmic Aspects of Machine Learning written by Ankur Moitra and published by Cambridge University Press. This book was released on 2018-09-27 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.

Book Robust Representation for Data Analytics

Download or read book Robust Representation for Data Analytics written by Sheng Li and published by Springer. This book was released on 2017-08-09 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary. Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.

Book Nonnegative Matrix Factorization

Download or read book Nonnegative Matrix Factorization written by Nicolas Gillis and published by SIAM. This book was released on 2020-12-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.

Book Compressed Sensing and Its Applications

Download or read book Compressed Sensing and Its Applications written by Holger Boche and published by Birkhäuser. This book was released on 2019-08-13 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chapters in this volume highlight the state-of-the-art of compressed sensing and are based on talks given at the third international MATHEON conference on the same topic, held from December 4-8, 2017 at the Technical University in Berlin. In addition to methods in compressed sensing, chapters provide insights into cutting edge applications of deep learning in data science, highlighting the overlapping ideas and methods that connect the fields of compressed sensing and deep learning. Specific topics covered include: Quantized compressed sensing Classification Machine learning Oracle inequalities Non-convex optimization Image reconstruction Statistical learning theory This volume will be a valuable resource for graduate students and researchers in the areas of mathematics, computer science, and engineering, as well as other applied scientists exploring potential applications of compressed sensing.

Book Foundations of Data Science

Download or read book Foundations of Data Science written by Avrim Blum and published by Cambridge University Press. This book was released on 2020-01-23 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.

Book High Dimensional Data Analysis with Low Dimensional Models

Download or read book High Dimensional Data Analysis with Low Dimensional Models written by John Wright and published by Cambridge University Press. This book was released on 2022-01-13 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: Connecting theory with practice, this systematic and rigorous introduction covers the fundamental principles, algorithms and applications of key mathematical models for high-dimensional data analysis. Comprehensive in its approach, it provides unified coverage of many different low-dimensional models and analytical techniques, including sparse and low-rank models, and both convex and non-convex formulations. Readers will learn how to develop efficient and scalable algorithms for solving real-world problems, supported by numerous examples and exercises throughout, and how to use the computational tools learnt in several application contexts. Applications presented include scientific imaging, communication, face recognition, 3D vision, and deep networks for classification. With code available online, this is an ideal textbook for senior and graduate students in computer science, data science, and electrical engineering, as well as for those taking courses on sparsity, low-dimensional structures, and high-dimensional data. Foreword by Emmanuel Candès.

Book Non convex Optimization for Machine Learning

Download or read book Non convex Optimization for Machine Learning written by Prateek Jain and published by Foundations and Trends in Machine Learning. This book was released on 2017-12-04 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It introduces the rich literature in this area, as well as equips the reader with the tools and techniques needed to apply and analyze simple but powerful procedures for non-convex problems. Non-convex Optimization for Machine Learning is as self-contained as possible while not losing focus of the main topic of non-convex optimization techniques. The monograph initiates the discussion with entire chapters devoted to presenting a tutorial-like treatment of basic concepts in convex analysis and optimization, as well as their non-convex counterparts. The monograph concludes with a look at four interesting applications in the areas of machine learning and signal processing, and exploring how the non-convex optimization techniques introduced earlier can be used to solve these problems. The monograph also contains, for each of the topics discussed, exercises and figures designed to engage the reader, as well as extensive bibliographic notes pointing towards classical works and recent advances. Non-convex Optimization for Machine Learning can be used for a semester-length course on the basics of non-convex optimization with applications to machine learning. On the other hand, it is also possible to cherry pick individual portions, such the chapter on sparse recovery, or the EM algorithm, for inclusion in a broader course. Several courses such as those in machine learning, optimization, and signal processing may benefit from the inclusion of such topics.

Book A Mathematical Introduction to Compressive Sensing

Download or read book A Mathematical Introduction to Compressive Sensing written by Simon Foucart and published by Springer Science & Business Media. This book was released on 2013-08-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.

Book Scalable Algorithms for Data and Network Analysis

Download or read book Scalable Algorithms for Data and Network Analysis written by Shang-Hua Teng and published by . This book was released on 2016-05-04 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the age of Big Data, efficient algorithms are in high demand. It is also essential that efficient algorithms should be scalable. This book surveys a family of algorithmic techniques for the design of scalable algorithms. These techniques include local network exploration, advanced sampling, sparsification, and geometric partitioning.