EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Prospects for High Power Linac Coherent Light Source  LCLS  Development in the 1000     1   Wavelength Range

Download or read book Prospects for High Power Linac Coherent Light Source LCLS Development in the 1000 1 Wavelength Range written by and published by . This book was released on 1994 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron bunch requirements for single-pass saturation of a Free-Electron Laser (FEL) operating at full transverse coherence in the Self-Amplified Spontaneous Emission (SASE) mode include: (1) a high peak current, (2) a sufficiently low relative energy spread, and (3) a transverse emittance {var_epsilon}[r-m] satisfying the condition {var_epsilon} ≤ [lambda]A/4[pi], where [lambda][m] is the output wavelength of the FEL. In the insertion device that induces the coherent amplification, the prepared electron bunch must be kept on a trajectory sufficiently collinear with the amplified photons without significant dilution of its transverse density. In this paper we discuss a Linac Coherent Light Source (LCLS) based on a high energy accelerator such as, e.g., the 3km S-band structure at the Stanford Linear Accelerator Center (SLAC), followed by a long high-precision undulator with superimposed quadrupole (FODO) focusing, to fulfill the given requirements for SASE operation in the 1000Å--1Å range. The electron source for the linac, an RF gun with a laser-excited photocathode featuring a normalized emittance in the 1--3 mm-mrad range, a longitudinal bunch duration of the order of 3 ps, and approximately 10−9 C/bunch, is a primary determinant of the required low transverse and longitudinal emittances. Acceleration of the injected bunch to energies in the 5--25 GeV range is used to reduce the relative longitudinal energy spread in the bunch, as well as to reduce the transverse emittance to values consistent with the cited wavelength regime. Two longitudinal compression stages are employed to increase the peak bunch current to the 2--5 kA levels required for sufficiently rapid saturation. The output radiation is delivered, via a grazing-incidence mirror bank, to optical instrumentation and a multi-user beam line system. Technological requirements for LCLS operation at 40Å, 4.5Å, and 1.5Å are examined.

Book Linac Coherent Light Source  LCLS  Design Study Report

Download or read book Linac Coherent Light Source LCLS Design Study Report written by and published by . This book was released on 1998 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Stanford Linear Accelerator Center (SLAC), in collaboration with Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, is proposing to build a Free-Electron-Laser (FEL) R and D facility operating in the self-amplified spontaneous emission (SASE) mode in the wavelength range 1.5--15 Å. This FEL, called Linac Coherent Light Source (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. In this report, the Design Team has established performance parameters for all the major components of the LCLS and developed a layout of the entire system. Chapter 1 is the Executive Summary. Chapter 2 (Overview) provides a brief description of each of the major sections of the LCLS, from the rf photocathode gun, through the experimental stations and electron beam dump. Chapter 3 describes the scientific case for the LCLS. Chapter 4 provides a review of the principles of the FEL physics that the LCLS is based on, and Chapter 5 discusses the choice of the system's physical parameters. Chapters 6 through 10 describe in detail each major element of the system. Chapters 11 through 13 respectively cover undulator controls, mechanical alignment, and radiation issues.

Book Energy Research Abstracts

Download or read book Energy Research Abstracts written by and published by . This book was released on 1995 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Linac Coherent Light Source II  LCLS II  Conceptual Design Report

Download or read book Linac Coherent Light Source II LCLS II Conceptual Design Report written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only constitutes a stepping stone to what we believe is needed over a longer time scale. At present, a practical time horizon for planning is about 15 years into the future, matching that of worldwide planning activities for competitive X-FEL facilities in Europe and Asia. We therefore envision LCLS-II as an important stage in development to what is required by about 2025, tentatively called LCLS-2025, for continued US leadership even as new facilities around the world are being completed. We envision LCLS primarily as a hard x-ray FEL facility with some soft x-ray capabilities. A survey of planned X-FEL facilities around the world suggests that US planning to 2025 needs to include an internationally competitive soft x-ray FEL facility which complements the LCLS plans outlined in this document.

Book Research and Development Toward a 4 5 1 5    Linac Coherent Light Source  LCLS  at SLAC

Download or read book Research and Development Toward a 4 5 1 5 Linac Coherent Light Source LCLS at SLAC written by and published by . This book was released on 1995 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 A) Linac Coherent Light Source (LCLS), a Free Electron Laser (FEL) operating in the Self- Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: (1) a peak current in the 7 kA range, (2) a relative energy spread of>0.05%, and (3) a transverse emittance, [epsilon][r-m], approximating the diffraction limit condition [epsilon] = [lambda] / 4[pi], where lambda(m) is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam processing techniques necessary for LCLS operation down to approx. 20 A, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 A LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas.

Book Linac Coherent Light Source  LCLS  at 2  4 Nm Using the SLAC Linac

Download or read book Linac Coherent Light Source LCLS at 2 4 Nm Using the SLAC Linac written by and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors describe the possible use of the SLAC linac to drive a unique, powerful, short wavelength Linac Coherent Light Source (LCLS). Using the FEL principle, lasing is achieved in a single pass of a high peak current electron beam through a long undulator by self-amplified-spontaneous-emission (SASE). The main components are a high-brightness electron RF gun with a photocathode, two electron bunch length compressors, the existing SLAC linac, beam diagnostics, and a long undulator combined with a FODO quadrupole focusing system. The RF gun, to be installed about 1 km from the end of the SLAC linac, would produce a single bunch of 6 x 10[sup 9] electrons with an invariant emittance of about 3 mm-mrad and a bunch length of about 500 [mu]m. That bunch is then accelerated to 100 MeV and compressed to a length of about 200 [mu]m. The main SLAC linac accelerates the bunch to 2 GeV were a second bunch compressor reduces the length to 30--40 [mu]m and produces a peak current of 2--3 kA. The bunch is then accelerated to 7--8 GeV and transported to a 50--70 m long undulator. Using electrons below 8 GeV, the undulator could operate at wavelengths down to 2 nm, producing about 10 GW peak power in sub-ps light pulses. At a linac repetition rate of 120 Hz, the average power is about 1 W. Linac operation at lower beam energies provides longer wavelength radiation. After the undulator, the beam is deposited in a dump. The LCLS light pulses are then distributed to multiple user stations using grazing incident mirrors. Length compression, emittance control, phase stability, FEL design criteria, and parameter tolerances are discussed. A demonstration experiment is also described which uses the SLAC linac and (possibly) the PALADIN undulator to study SASE to power saturation at wavelengths of 40--360 nm.

Book Linac Coherent Light Source   Status and Prospects

Download or read book Linac Coherent Light Source Status and Prospects written by John N. Galayda and published by . This book was released on 2005 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Linac Coherent Light Source (LCLS) Project will be an x-ray free-electron laser. It is intended to produce pulses of 800-8,000 eV photons. Each pulse, produced with a repetition frequency of up to 120 Hz, will provide>10{sup 12} photons within a duration of less than 200 femtoseconds. The project employs the last kilometer of the SLAC linac to provide a low-emittance electron beam in the energy range 4-14 GeV to a single undulator. Two experiment halls, located 100m and 350m from the undulator exit, will house six experiment stations for research in atomic/molecular physics, pump-probe dynamics of materials and chemical processes, x-ray imaging of clusters and complex molecules, and plasma physics. Engineering design activities began in 2003, and the project is to be completed in March 2009. The project design permits straightforward expansion of the LCLS to multiple undulators.

Book Research and Development Toward a 4 5 1 5 Angstrom  Linac Coherent Light Source  LCLS  at SLAC

Download or read book Research and Development Toward a 4 5 1 5 Angstrom Linac Coherent Light Source LCLS at SLAC written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years significant studies have been initiated on the feasibility of utilizing a portion of the 3km S-band accelerator at SLAC to drive a short wavelength (4.5-1.5 A) Linac Coherent Light Source (LCLS), a Free Electron Laser (FEL) operating in the Self- Amplified Spontaneous Emission (SASE) regime. Electron beam requirements for single-pass saturation in a minimal time include: (1) a peak current in the 7 kA range, (2) a relative energy spread of[lt]0.05%, and (3) a transverse emittance, [epsilon][r-m], approximating the diffraction limit condition[epsilon]=[lambda] / 4[pi], where lambda(m) is the output wavelength. Requirements on the insertion device include field error levels of 0.02% for keeping the electron bunch centered on and in phase with the amplified photons, and a focusing beta of 8 m/rad for inhibiting the dilution of its transverse density. Although much progress has been made in developing individual components and beam processing techniques necessary for LCLS operation down to approx. 20 A, a substantial amount of research and development is still required in a number of theoretical and experimental areas leading to the construction and operation of a 4.5-1.5 A LCLS. In this paper we report on a research and development program underway and in planning at SLAC for addressing critical questions in these areas.

Book X Ray Lasers 1994 Fourth International Colloquium

Download or read book X Ray Lasers 1994 Fourth International Colloquium written by David C. Elder and published by American Institute of Physics. This book was released on 2000-04-14 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation The proceedings of the May 1994 colloquium review the progress in the development of x-ray lasers and their applications. The colloquium marked the 10th anniversary of the initial demonstration of x-ray lasing and this collection of papers shows the progress that has been made in these last ten years. Among the topics are improvement in efficiency and coherence of collisional excitation x-ray lasers; theory of recombination x-ray lasers based on optical-field ionization; coupling between remote plasmas in an "injector-amplifier" XUV laser system; and a linearly polarized soft x-ray laser. No index. Annotation c. by Book News, Inc., Portland, Or.

Book Status of the Linac Coherent Light Source

Download or read book Status of the Linac Coherent Light Source written by and published by . This book was released on 2011 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Linac Coherent Light Source (LCLS) is a free electron laser facility in construction at Stanford Linear Accelerator Center. It is designed to operate in the wavelength range 0.15-1.5 nanometers. At the time of this conference, civil construction of new tunnels and buildings is complete, the necessary modifications to the SLAC linac are complete, and the undulator system and x-ray optics/diagnostics are being installed. The electron gun, 135 MeV injector linac and 250 MeV bunch compressor were commissioned in 2007. Accelerator commissioning activities are presently devoted to the achievement of performance goals for the completed 14 GeV linac.

Book Future Possibilities of the Linac Coherent Light Source

Download or read book Future Possibilities of the Linac Coherent Light Source written by M. Cornacchia and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: A study of the potential for the development of the Linac Coherent Light Source beyond the specifications of the baseline design is presented. These future developments include delivery of x-ray pulses in the one femtosecond regime, extension of the spectral range, increase of the FEL power, exploitation of the spontaneous emission, and a more flexible time structure. As this potential is exploited, the LCLS can maintain its role as a world leading instrument for many years beyond its commissioning in 2008 and initial operation as the world's first x-ray free-electron laser.

Book The LINAC Coherent Light Source and Radiological Issues During the Commissioning

Download or read book The LINAC Coherent Light Source and Radiological Issues During the Commissioning written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is the world's first X-ray free electron laser (XFEL). Pulses of x-ray laser light from LCLS will be many orders of magnitude brighter and several orders of magnitude shorter than what can be produced by other x-ray sources available in the world. These characteristics will enable frontier new science in many areas. This paper describes the LCLS beam parameters and lay-out. The general radiological issues during commissioning are presented, such as radiation dose rates and integrated doses outside the enclosure. Also, specific radiological issues related to X-ray free electron lasers are discussed. XFEL with high peak power will burn through high-Z materials. The X-ray beam needs to be blocked by stoppers when the downstream areas are occupied. LCLS stoppers feature a piece of boron carbide (B4C), 10 mm thick. B4C is one of the best materials since it has a low absorption coefficient for X-rays and a high melting temperature. Theoretical calculations indicate that the unfocused fluence of the LCLS XFEL beam should be about one order of magnitude below the damage threshold for bulk B4C, for 830 eV FEL radiation. However, these calculations have not been tested experimentally and cannot be validated until LCLS begins providing 830 eV XFEL pulses. This paper describes the test plan for using the initial LCLS radiation to evaluate the survivability of B4C and reports the preliminary results. Another major issue for LCLS is the potential radiation damage to the LCLS undulator magnets during operation. TLD dosimeters were installed along the LCLS undulators for each period of two or three weeks. This paper reports the integrated doses along the undulators with and without XFEL generation.

Book Short Wavelength FELs Using the SLAC Linac

Download or read book Short Wavelength FELs Using the SLAC Linac written by and published by . This book was released on 1993 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops.

Book Government Reports Announcements   Index

Download or read book Government Reports Announcements Index written by and published by . This book was released on 1995 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book LCLS Ultrafast Science Instruments

Download or read book LCLS Ultrafast Science Instruments written by and published by . This book was released on 2007 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Stanford Linear Accelerator Center (SLAC), along with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) facility, which will operate in the wavelength range 1.5 nm - 0.15 nm. This FEL, the Linac Coherent Light Source (LCLS), utilizes the SLAC linac and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac will be used as the source of electrons for the LCLS. The high energy electrons will be transported across the SLAC Research Yard, into a tunnel which will house a long undulator. In passing through the undulator, the electrons will be bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength will be tunable from 1.5 nm to 0.15 nm. The LCLS will include two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing three X-ray instruments in order to exploit the unique scientific capability of this new LCLS facility. The technical objective of the LCLS Ultrafast Science Instruments (LUSI) project is to design, build, and install at the LCLS three hard X-ray instruments that will complement the initial instrument included in the LCLS construction. As the science programs advance and new technological challenges appear, instrumentation needs to be developed and ready to conquer these new opportunities. The LCLS instrument concepts have been developed in close consultation with the scientific community through a series of workshops team meetings and focused reviews. In particular, the LUSI project instruments have been identified as meeting the most urgent needs of the scientific community based on the advice of the LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the breadth of the scientific community.

Book Linac Coherent Light Source  LCLS  Conceptual Design Report

Download or read book Linac Coherent Light Source LCLS Conceptual Design Report written by and published by . This book was released on 2002 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Stanford Linear Accelerator Center, in collaboration with Argonne National Laboratory, Brookhaven National Laboratory, Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the University of California at Los Angeles, have collaborated to create a conceptual design for a Free-Electron-Laser (FEL) R & D facility operating in the wavelength range 1.5-15 Å. This FEL, called the ''Linac Coherent Light Source'' (LCLS), utilizes the SLAC linac and produces sub-picosecond pulses of short wavelength x-rays with very high peak brightness and full transverse coherence. The first two-thirds of the SLAC linac are used for injection into the PEP-II storage rings. The last one-third will be converted to a source of electrons for the LCLS. The electrons will be transported to the SLAC Final Focus Test Beam (FFTB) Facility, which will be extended to house a 122-m undulator system. In passing through the undulators, the electrons will be bunched by the force of their own synchrotron radiation to produce an intense, spatially coherent beam of x-rays, tunable in energy from 0.8 keV to 8 keV. The LCLS will include two experiment halls as well as x-ray optics and infrastructure necessary to make use of this x-ray beam for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of constructing an x-ray FEL based on the SLAC linac.

Book Radiation Safety Aspects of the Linac Coherent Light Source Project At SLAC

Download or read book Radiation Safety Aspects of the Linac Coherent Light Source Project At SLAC written by A. Fasso and published by . This book was released on 2005 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Linac Coherent Light Source (LCLS) is a Self-Amplified Spontaneous Emission based Free Electron Laser (FEL) that is being designed and built at the Stanford Linear Accelerator Center (SLAC) by a multilaboratory collaboration. This facility will provide ultra-short pulses of coherent x-ray radiation with the fundamental harmonic energy tunable over the energy range of 0.82 to 8.2 keV. One-third of the existing SLAC LINAC will compress and accelerate the electron beam to energies ranging from 4.5 GeV to 14.35 GeV. The beam will then be transported through a 130-meter long undulator, emit FEL and spontaneous radiation. After passing through the undulator, the electron beam is bent to the main electron dump. The LCLS will have two experiment halls as well as x-ray optics and infrastructure necessary to make use of the FEL for research and development in a variety of scientific fields. The facility design will incorporate features that would make it possible to expand in future such that up to 6 independent undulators can be used. While some of the radiation protection issues for the LCLS are similar to those encountered at both high-energy electron linacs and synchrotron radiation facilities, LCLS poses new challenges as well. Some of these new issues include: the length of the facility and of the undulator, the experimental floor in line with the electron beam and the occupancy near zero degrees, and the very high instantaneous intensity of the FEL. The shielding design criteria, methodology, and results from Monte Carlo and analytical calculations are presented.