Download or read book Proof Theory in Computer Science written by Reinhard Kahle and published by Springer Science & Business Media. This book was released on 2001-09-28 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the International Seminar on Proof Theory in Computer Science, PTCS 2001, held in Dagstuhl Castle, Germany, in October 2001. The 13 thoroughly revised full papers were carefully reviewed and selected for inclusion in the book. Among the topics addressed are higher type recursion, lambda calculus, complexity theory, transfinite induction, categories, induction-recursion, post-Turing analysis, natural deduction, implicit characterization, iterate logic, and Java programming.
Download or read book Basic Proof Theory written by A. S. Troelstra and published by Cambridge University Press. This book was released on 2000-07-27 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the basic ideas of structural proof theory contains a thorough discussion and comparison of various types of formalization of first-order logic. Examples are given of several areas of application, namely: the metamathematics of pure first-order logic (intuitionistic as well as classical); the theory of logic programming; category theory; modal logic; linear logic; first-order arithmetic and second-order logic. In each case the aim is to illustrate the methods in relatively simple situations and then apply them elsewhere in much more complex settings. There are numerous exercises throughout the text. In general, the only prerequisite is a standard course in first-order logic, making the book ideal for graduate students and beginning researchers in mathematical logic, theoretical computer science and artificial intelligence. For the new edition, many sections have been rewritten to improve clarity, new sections have been added on cut elimination, and solutions to selected exercises have been included.
Download or read book Fundamental Proof Methods in Computer Science written by Konstantine Arkoudas and published by MIT Press. This book was released on 2017-04-28 with total page 1223 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook that teaches students to read and write proofs using Athena. Proof is the primary vehicle for knowledge generation in mathematics. In computer science, proof has found an additional use: verifying that a particular system (or component, or algorithm) has certain desirable properties. This book teaches students how to read and write proofs using Athena, a freely downloadable computer language. Athena proofs are machine-checkable and written in an intuitive natural-deduction style. The book contains more than 300 exercises, most with full solutions. By putting proofs into practice, it demonstrates the fundamental role of logic and proof in computer science as no other existing text does. Guided by examples and exercises, students are quickly immersed in the most useful high-level proof methods, including equational reasoning, several forms of induction, case analysis, proof by contradiction, and abstraction/specialization. The book includes auxiliary material on SAT and SMT solving, automated theorem proving, and logic programming. The book can be used by upper undergraduate or graduate computer science students with a basic level of programming and mathematical experience. Professional programmers, practitioners of formal methods, and researchers in logic-related branches of computer science will find it a valuable reference.
Download or read book A Proof Theory for Description Logics written by Alexandre Rademaker and published by Springer Science & Business Media. This book was released on 2012-05-17 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: Description Logics (DLs) is a family of formalisms used to represent knowledge of a domain. They are equipped with a formal logic-based semantics. Knowledge representation systems based on description logics provide various inference capabilities that deduce implicit knowledge from the explicitly represented knowledge. A Proof Theory for Description Logics introduces Sequent Calculi and Natural Deduction for some DLs (ALC, ALCQ). Cut-elimination and Normalization are proved for the calculi. The author argues that such systems can improve the extraction of computational content from DLs proofs for explanation purposes.
Download or read book Logic for Computer Science written by Jean H. Gallier and published by Courier Dover Publications. This book was released on 2015-06-18 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.
Download or read book Handbook of Proof Theory written by S.R. Buss and published by Elsevier. This book was released on 1998-07-09 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Download or read book Proof Theory in Computer Science written by Reinhard Kahle and published by Springer. This book was released on 2003-06-30 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proof theory has long been established as a basic discipline of mathematical logic. It has recently become increasingly relevant to computer science. The - ductive apparatus provided by proof theory has proved useful for metatheoretical purposes as well as for practical applications. Thus it seemed to us most natural to bring researchers together to assess both the role proof theory already plays in computer science and the role it might play in the future. The form of a Dagstuhl seminar is most suitable for purposes like this, as Schloß Dagstuhl provides a very convenient and stimulating environment to - scuss new ideas and developments. To accompany the conference with a proc- dings volume appeared to us equally appropriate. Such a volume not only ?xes basic results of the subject and makes them available to a broader audience, but also signals to the scienti?c community that Proof Theory in Computer Science (PTCS) is a major research branch within the wider ?eld of logic in computer science.
Download or read book Handbook of Logic and Proof Techniques for Computer Science written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Logic is, and should be, the core subject area of modern mathemat ics. The blueprint for twentieth century mathematical thought, thanks to Hilbert and Bourbaki, is the axiomatic development of the subject. As a result, logic plays a central conceptual role. At the same time, mathematical logic has grown into one of the most recondite areas of mathematics. Most of modern logic is inaccessible to all but the special ist. Yet there is a need for many mathematical scientists-not just those engaged in mathematical research-to become conversant with the key ideas of logic. The Handbook of Mathematical Logic, edited by Jon Bar wise, is in point of fact a handbook written by logicians for other mathe maticians. It was, at the time of its writing, encyclopedic, authoritative, and up-to-the-moment. But it was, and remains, a comprehensive and authoritative book for the cognoscenti. The encyclopedic Handbook of Logic in Computer Science by Abramsky, Gabbay, and Maibaum is a wonderful resource for the professional. But it is overwhelming for the casual user. There is need for a book that introduces important logic terminology and concepts to the working mathematical scientist who has only a passing acquaintance with logic. Thus the present work has a different target audience. The intent of this handbook is to present the elements of modern logic, including many current topics, to the reader having only basic mathe matical literacy.
Download or read book Proof Theory for Fuzzy Logics written by George Metcalfe and published by Springer Science & Business Media. This book was released on 2008-11-27 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy logics are many-valued logics that are well suited to reasoning in the context of vagueness. They provide the basis for the wider field of Fuzzy Logic, encompassing diverse areas such as fuzzy control, fuzzy databases, and fuzzy mathematics. This book provides an accessible and up-to-date introduction to this fast-growing and increasingly popular area. It focuses in particular on the development and applications of "proof-theoretic" presentations of fuzzy logics; the result of more than ten years of intensive work by researchers in the area, including the authors. In addition to providing alternative elegant presentations of fuzzy logics, proof-theoretic methods are useful for addressing theoretical problems (including key standard completeness results) and developing efficient deduction and decision algorithms. Proof-theoretic presentations also place fuzzy logics in the broader landscape of non-classical logics, revealing deep relations with other logics studied in Computer Science, Mathematics, and Philosophy. The book builds methodically from the semantic origins of fuzzy logics to proof-theoretic presentations such as Hilbert and Gentzen systems, introducing both theoretical and practical applications of these presentations.
Download or read book Proof And Computation Digitization In Mathematics Computer Science And Philosophy written by Klaus Mainzer and published by World Scientific. This book was released on 2018-05-30 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for graduate students and researchers, introducing modern foundational research in mathematics, computer science, and philosophy from an interdisciplinary point of view. Its scope includes Predicative Foundations, Constructive Mathematics and Type Theory, Computation in Higher Types, Extraction of Programs from Proofs, and Algorithmic Aspects in Financial Mathematics. By filling the gap between (under-)graduate level textbooks and advanced research papers, the book gives a scholarly account of recent developments and emerging branches of the aforementioned fields.
Download or read book Three Views of Logic written by Donald W. Loveland and published by Princeton University Press. This book was released on 2014-01-26 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first interdisciplinary textbook to introduce students to three critical areas in applied logic Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-order logic using a computer-oriented (resolution) formal system. Linear resolution and its connection to the programming language Prolog are also treated. The computability component offers a machine model and mathematical model for computation, proves the equivalence of the two approaches, and includes famous decision problems unsolvable by an algorithm. The section on nonclassical logic discusses the shortcomings of classical logic in its treatment of implication and an alternate approach that improves upon it: Anderson and Belnap's relevance logic. Applications are included in each section. The material on a four-valued semantics for relevance logic is presented in textbook form for the first time. Aimed at upper-level undergraduates of moderate analytical background, Three Views of Logic will be useful in a variety of classroom settings. Gives an exceptionally broad view of logic Treats traditional logic in a modern format Presents relevance logic with applications Provides an ideal text for a variety of one-semester upper-level undergraduate courses
Download or read book Proof Theory and Automated Deduction written by Jean Goubault-Larrecq and published by Springer Science & Business Media. This book was released on 2001-11-30 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in computer applications has led to a new attitude to applied logic in which researchers tailor a logic in the same way they define a computer language. In response to this attitude, this text for undergraduate and graduate students discusses major algorithmic methodologies, and tableaux and resolution methods. The authors focus on first-order logic, the use of proof theory, and the computer application of automated searches for proofs of mathematical propositions. Annotation copyrighted by Book News, Inc., Portland, OR
Download or read book Proofs and Computations written by Helmut Schwichtenberg and published by Cambridge University Press. This book was released on 2011-12-15 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to Π11–CA0. Ordinal analysis and the (Schwichtenberg–Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and Π11–CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.
Download or read book Structural Proof Theory written by Sara Negri and published by Cambridge University Press. This book was released on 2008-07-10 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise introduction to structural proof theory, a branch of logic studying the general structure of logical and mathematical proofs.
Download or read book An Introduction to Proof Theory written by Paolo Mancosu and published by Oxford University Press. This book was released on 2021-08-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.
Download or read book Proof Theory written by Peter Aczel and published by Cambridge University Press. This book was released on 1992 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The lecture courses in this work are derived from the SERC 'Logic for IT' Summer School and Conference on Proof Theory held at Leeds University. The contributions come from acknowledged experts and comprise expository and research articles; put together in this book they form an invaluable introduction to proof theory that is aimed at both mathematicians and computer scientists.
Download or read book How to Prove It written by Daniel J. Velleman and published by Cambridge University Press. This book was released on 2006-01-16 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.