EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Progress in Heavy Ion Drivers Inertial Fusion Energy

Download or read book Progress in Heavy Ion Drivers Inertial Fusion Energy written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents ((almost equal to)100's Amperes/beam) and ion energies ((almost equal to)1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will provide an integrated test of the beam physics necessary for a driver, but in addition will provide target and chamber data. This paper will review the experimental and theoretical progress in heavy ion accelerator driver research from the scaled experiments through the present experiments and will discuss plans for the IRE.

Book Progress in Heavy Ion Driven Inertial Fusion Energy

Download or read book Progress in Heavy Ion Driven Inertial Fusion Energy written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents (approx 100's Amperes/beam) and ion energies ((almost equal to) 1 - 10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tun depressions, and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in the Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now beginning at LBNL. The mission of the HCX is to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned. The step which bridges the gap between the IBX and an engineering test facility for fusion has been designated the Integrated Research Experiment (IRE). The IRE (like the IBX) will provide an integrated test of the beam physics necessary for a driver, but in addition will provide target and chamber data. This paper will review the experimental and theoretical progress in heavy ion accelerator driver research from the scaled experiments through the present experiments and will discuss plans for the IRE.

Book Progress in Heavy Ion Driven Inertial Fusion Energy

Download or read book Progress in Heavy Ion Driven Inertial Fusion Energy written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The promise of inertial fusion energy driven by heavy ion beams requires the development of accelerators that produce ion currents ((almost equal to)100s Amperesheam) and ion energies ((almost equal to)1-10 GeV) that have not been achieved simultaneously in any existing accelerator. The high currents imply high generalized perveances, large tune depressions. and high space charge potentials of the beam center relative to the beam pipe. Many of the scientific issues associated with ion beams of high perveance and large tune depression have been addressed over the last two decades on scaled experiments at Lawrence Berkeley and Lawrence Livermore National Laboratories, the University of Maryland, and elsewhere. The additional requirement of high space charge potential (or equivalently high line charge density) gives rise to effects (particularly the role of electrons in beam transport) which must be understood before proceeding to a large scale accelerator. The first phase of a new series of experiments in Heavy Ion Fusion Virtual National Laboratory (HIF VNL), the High Current Experiments (HCX), is now being constructed at LBNL. The mission of the HCX will be to transport beams with driver line charge density so as to investigate the physics of this regime, including constraints on the maximum radial filling factor of the beam through the pipe. This factor is important for determining both cost and reliability of a driver scale accelerator. The HCX will provide data for design of the next steps in the sequence of experiments leading to an inertial Fusion energy power plant. The focus of the program after the HCX will be on integration of all of the manipulations required for a driver. In the near term following HCX, an Integrated Beam Experiment (IBX) of the same general scale as the HCX is envisioned.

Book Progress in Heavy ion Drivers for Inertial Fusion

Download or read book Progress in Heavy ion Drivers for Inertial Fusion written by and published by . This book was released on 1994 with total page 15 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heavy-ion induction accelerators are being developed as fusion drivers for ICF power production in the US Inertial Fusion Energy (IFE) program, in the Office of Fusion Energy of the US Department of Energy. In addition, they represent an attractive driver option for a high-yield microfusion facility for defense research. This paper describes recent progress in induction drivers for Heavy-Ion Fusion (HIF), and plans for future work. It presents research aimed at developing drivers having reduced cost and size, specifically advanced induction linacs and recirculating induction accelerators (recirculators). The goals and design of the Elise accelerator being built at Lawrence Berkeley Laboratory (LBL), as the first stage of the ILSE (Induction Linac Systems Experiments) program, are described. Elise will accelerate, for the first time, space-charge-dominated ion beams which are of full driver scale in line-charge density and diameter. Elise will be a platform on which the critical beam manipulations of the induction approach can be explored. An experimental program at Lawrence Livermore National Laboratory (LLNL) exploring the recirculator principle on a small scale is described in some detail; it is expected that these studies will result ultimately in an operational prototype recirculating induction accelerator. In addition, other elements of the US HIF program are described.

Book Elise   the Next Step in Development of Induction Heavy Ion Drivers for Inertial Fusion Energy

Download or read book Elise the Next Step in Development of Induction Heavy Ion Drivers for Inertial Fusion Energy written by and published by . This book was released on 1994 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: LBL, with the participation of LLNL and industry, proposes to build Elise, an electric-focused accelerator as the next logical step towards the eventual goal of a heavy-ion induction linac powerful enough to implode or {open_quotes}drive{close_quotes} inertial-confinement fusion targets. Elise will be at full driver scale in several important parameters-most notably line charge density (a function of beam size), which was not explored in earlier experiments. Elise will be capable of accelerating and electrostatically focusing four parallel, full-scale ion beams and will be designed to be extendible, by successive future construction projects, to meet the goal of the USA DOE Inertial Fusion Energy program (IFE). This goal is to address all remaining issues in heavy-ion IFE except target physics, which is currently the responsibility of DOE Defense Programs, and the target chamber. Thus Elise is the first step of a program that will provide a solid foundation of data for further progress toward a driver, as called for in the National Energy Strategy and National Energy Policy Act.

Book Energy from Inertial Fusion

Download or read book Energy from Inertial Fusion written by International Atomic Energy Agency and published by . This book was released on 1995 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication describes the current scientific, engineering and technological developments in the field of inertial confinement fusion (ICF). It provides an introduction to ICF as well as an overview of the various technologies needed for inertial fusion power plant development. It was compiled by an international group of experts under the auspices of an IAEA Advisory Group on Inertial Fusion Energy and is intended for a large audience, e.g. policy makers, scientists, engineers or technologists in other fields, and students.

Book Overview of US Heavy ion Fusion Progress and Plans

Download or read book Overview of US Heavy ion Fusion Progress and Plans written by and published by . This book was released on 2004 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Significant experimental and theoretical progress has been made in the U.S. heavy ion fusion program on high-current sources, transport, final focusing, chambers and targets for inertial fusion energy (IFE) driven by induction linac accelerators seek to provide the scientific and technical basis for the Integrated Beam Experiment (IBX), an integrated source-to-target physics experiment recently included in the list of future facilities planned by the U.S. Department of Energy. To optimize the design of IBX and future inertial fusion energy drivers, current HIF-VNL research is addressing several key issues (representative, not inclusive): gas and electron cloud effects which can exacerbate beam loss at high beam perveance and magnet aperture fill factors; ballistic neutralized and assisted-pinch focusing of neutralized heavy ion beams; limits on longitudinal compression of both neutralized and un-neutralized heavy ion bunches; and tailoring heavy ion beams for uniform target energy deposition for high energy density physics (HEDP) studies.

Book Systems Modeling and Analysis of Heavy Ion Drivers for Inertial Fusion Energy

Download or read book Systems Modeling and Analysis of Heavy Ion Drivers for Inertial Fusion Energy written by and published by . This book was released on 1998 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: A computer model for systems analysis of heavy ion drivers based on induction linac technology has been used to evaluate driver designs for inertial fusion energy (IFE). Design parameters and estimated costs have been determined for drivers with various ions, different charge states, different front-end designs, with and without beam merging, and various pulse compression and acceleration schedules. We have examined the sensitivity of the results to variations in component cost assumptions, design constraints, and selected design parameters.

Book Research in the US on Heavy Ion Drivers for Inertial Confinement Fusion

Download or read book Research in the US on Heavy Ion Drivers for Inertial Confinement Fusion written by and published by . This book was released on 1986 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The US study of high-energy multigap accelerators to produce large currents of heavy ions for inertial fusion is centered on the single-pass induction linac method. The large technology base associated with multigap accelerators for high-energy physics gives confidence that high efficiency, high repetition rate, and good availability can be achieved, and that the path from scientific demonstration to commercial realization can be a smooth one. In an induction linac driver, multiple (parallet to) ion beams are accelerated through a sequence of pulsed transformers. Crucial to the design is the manipulation of electric fields to amplify the beam current during acceleration. A proof-of-principle induction linac experiment (MBE-4) is underway and has begun the first demonstration of current amplification, control of the bunch ends, and the acceleration of multiple beams. A recently completed experiment, called the Single Beam Transport Experiment has shown that we can now count on more freedom to design an alternating-gradient quadrupole focusing channel to transport much higher ion-beam currents than formerly believed possible. A recent Heavy Ion Fusion System Assessment (HIFSA) has shown that a substantial cost saving results from use of multiply-charged ions, and that a remarkably broad range of options exist for viable power-plant designs. The driver cost at 3 to 4 MJ could be $200/joule or less, and the cost of electricity in the range of 50 to 55 mills/kWhr.

Book Heavy Ion Fusion

    Book Details:
  • Author :
  • Publisher :
  • Release : 1995
  • ISBN :
  • Pages : 6 pages

Download or read book Heavy Ion Fusion written by and published by . This book was released on 1995 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this talk is to review the status of HIF as it was presented at Princeton, and also to try to deduce something about the prospects for HIF in particular, and fusion in general, from the world and US political scene. The status of the field is largely, though not entirely, expressed through presentations from the two leading HIF efforts: (1) the US program, centered at LBNL and LLNL, is primarily concerned with applying induction linac technology for HIF drivers; (2) the European program, centered at GSI, Darmstadt, but including several other laboratories, is primarily directed towards the rf linac approach using storage rings for energy compression. Several developments in the field of HIF should be noted: (1) progress towards construction of the National Ignition Facility (NIF) gives strength to the whole rational for developing a driver for Inertial Fusion Energy; (2) the field of accelerator science has matured far beyond the status that it had in 1976; (3) Heavy Ion Fusion has passed some more reviews, including one by the Fusion Energy Advisory Committee (FEAC), and has received the usual good marks; (5) as the budgets for Magnetic Fusion have fallen, the pressures on the Office of Fusion energy (OFE) have intensified, and a move is underway to shift the HIF program out of the IFE program and back into the ICF program in the Defense Programs (DP) side of the DOE.

Book Inertially Confined Fusion Using Heavy Ion Drivers

Download or read book Inertially Confined Fusion Using Heavy Ion Drivers written by and published by . This book was released on 1991 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: The various technical issues of HIF will be briefly reviewed in this paper. It will be seen that there are numerous areas in common in all the approaches to HIF. In the recent International Symposium on Heavy Ion Inertial Fusion, the attendees met in specialized workshop sessions to consider the needs for research in each area. Each of the workshop groups considered the key questions of this report: (1) Is this an appropriate time for international collaboration in HIF? (2) Which problems are most appropriate for such collaboration? (3) Can the sharing of target design information be set aside until other driver and systems issues are better resolved, by which time it might be supposed that there could be a relaxation of classification of target issues? (4) What form(s) of collaboration are most appropriate, e.g., bilateral or multilateral? (5) Can international collaboration be sensibly attempted without significant increases in funding for HIF? The authors of this report share the conviction that collaboration on a broad scale is mandatory for HIF to have the resources, both financial and personnel, to progress to a demonstration experiment. Ultimately it may be possible for a single driver with the energy, power, focusibility, and pulse shape to satisfy the needs of the international community for target physics research. Such a facility could service multiple experimental chambers with a variety of beam geometries and target concepts.

Book ILSE

    Book Details:
  • Author :
  • Publisher :
  • Release : 1992
  • ISBN :
  • Pages : 10 pages

Download or read book ILSE written by and published by . This book was released on 1992 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: LBL and LLNL propose to build, at LBL, the Induction Linac Systems Experiments (ILSE), the next logical step towards the eventual goal of a heavy-ion induction accelerator powerful enough to implode or ''drive'' inertial-confinement fusion targets. ILSE, although much smaller than a driver, will be the first experiment at full driver scale in several important parameters. Most notable among these are line charge density and beam cross section. Many other accelerator components and beam manipulations needed for an inertial fusion energy (IFE) driver will be tested. The ILSE accelerator and research program will permit experimental study of those beam manipulations required of an induction linac inertial fusion driver which have not been tested sufficiently in previous experiments, and will provide a step toward driver technology.

Book Heavy ion Inertial Fusion

Download or read book Heavy ion Inertial Fusion written by and published by . This book was released on 1981 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Inertial-fusion targets have been designed for use with heavy-ion accelerators as drivers in fusion energy power plants. We have made an initial survey of target gain versus beam energy, power, focal radius, and ion range. This provides input for understanding the trade-offs among accelerator designs.

Book Heavy ion inertial fusion

    Book Details:
  • Author : HEAVY ION INERTIAL FUSION.
  • Publisher :
  • Release : 1986
  • ISBN : 9780883183526
  • Pages : 0 pages

Download or read book Heavy ion inertial fusion written by HEAVY ION INERTIAL FUSION. and published by . This book was released on 1986 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Heavy Ion Inertial Fusion

Download or read book Heavy Ion Inertial Fusion written by and published by . This book was released on 1986 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: