EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Programming Models for Parallel Computing

Download or read book Programming Models for Parallel Computing written by Pavan Balaji and published by MIT Press. This book was released on 2015-11-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng

Book Programming Massively Parallel Processors

Download or read book Programming Massively Parallel Processors written by David B. Kirk and published by Newnes. This book was released on 2012-12-31 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Book Programming Models for Massively Parallel Computers

Download or read book Programming Models for Massively Parallel Computers written by and published by . This book was released on 1998 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings 1995

    Book Details:
  • Author : Wolfgang Giloi
  • Publisher : Institute of Electrical & Electronics Engineers(IEEE)
  • Release : 1995
  • ISBN : 9780818671777
  • Pages : 244 pages

Download or read book Proceedings 1995 written by Wolfgang Giloi and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 1995 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conference was called to address the difficulty of programming distributed memory machines, which is inhibiting the spread of scalable parallel computers; the goal is high-level, application-oriented programming models that assign to the compiler the burdensome, low-level mechanisms of parallel

Book Programming Models for Massively Parallel Computers  1993

Download or read book Programming Models for Massively Parallel Computers 1993 written by Wolfgang Giloi and published by . This book was released on 1993 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings -- Parallel Computing.

Book Proceedings 1995

    Book Details:
  • Author : Wolfgang Giloi
  • Publisher : Institute of Electrical & Electronics Engineers(IEEE)
  • Release : 1995
  • ISBN :
  • Pages : 264 pages

Download or read book Proceedings 1995 written by Wolfgang Giloi and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 1995 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conference was called to address the difficulty of programming distributed memory machines, which is inhibiting the spread of scalable parallel computers; the goal is high-level, application-oriented programming models that assign to the compiler the burdensome, low-level mechanisms of parallel

Book High Level Parallel Programming Models and Supportive Environments

Download or read book High Level Parallel Programming Models and Supportive Environments written by Frank Mueller and published by Springer. This book was released on 2003-05-15 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: On the 23rd of April, 2001, the 6th Workshop on High-Level Parallel P- gramming Models and Supportive Environments (LCTES’98) was held in San Francisco. HIPShas been held over the past six years in conjunction with IPDPS, the Internation Parallel and Distributed Processing Symposium. The HIPSworkshop focuses on high-level programming of networks of wo- stations, computing clusters and of massively-parallel machines. Its goal is to bring together researchers working in the areas of applications, language design, compilers, system architecture and programming tools to discuss new devel- ments in programming such systems. In recent years, several standards have emerged with an increasing demand of support for parallel and distributed processing. On one end, message-passing frameworks, such as PVM, MPI and VIA, provide support for basic commu- cation. On the other hand, distributed object standards, such as CORBA and DCOM, provide support for handling remote objects in a client-server fashion but also ensure certain guarantees for the quality of services. The key issues for the success of programming parallel and distributed en- ronments are high-level programming concepts and e?ciency. In addition, other quality categories have to be taken into account, such as scalability, security, bandwidth guarantees and fault tolerance, just to name a few. Today’s challenge is to provide high-level programming concepts without s- ri?cing e?ciency. This is only possible by carefully designing for those concepts and by providing supportive programming environments that facilitate program development and tuning.

Book Programming Environments for Massively Parallel Distributed Systems

Download or read book Programming Environments for Massively Parallel Distributed Systems written by Karsten M. Decker and published by Birkhäuser. This book was released on 2013-04-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Massively Parallel Systems (MPSs) with their scalable computation and storage space promises are becoming increasingly important for high-performance computing. The growing acceptance of MPSs in academia is clearly apparent. However, in industrial companies, their usage remains low. The programming of MPSs is still the big obstacle, and solving this software problem is sometimes referred to as one of the most challenging tasks of the 1990's. The 1994 working conference on "Programming Environments for Massively Parallel Systems" was the latest event of the working group WG 10.3 of the International Federation for Information Processing (IFIP) in this field. It succeeded the 1992 conference in Edinburgh on "Programming Environments for Parallel Computing". The research and development work discussed at the conference addresses the entire spectrum of software problems including virtual machines which are less cumbersome to program; more convenient programming models; advanced programming languages, and especially more sophisticated programming tools; but also algorithms and applications.

Book Associative Computing

    Book Details:
  • Author : Jerry L. Potter
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461533007
  • Pages : 291 pages

Download or read book Associative Computing written by Jerry L. Potter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrating associative processing concepts with massively parallel SIMD technology, this volume explores a model for accessing data by content rather than abstract address mapping.

Book The SIMD Model of Parallel Computation

Download or read book The SIMD Model of Parallel Computation written by Robert Cypher and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1.1 Background There are many paradigmatic statements in the literature claiming that this is the decade of parallel computation. A great deal of research is being de voted to developing architectures and algorithms for parallel machines with thousands, or even millions, of processors. Such massively parallel computers have been made feasible by advances in VLSI (very large scale integration) technology. In fact, a number of computers having over one thousand pro cessors are commercially available. Furthermore, it is reasonable to expect that as VLSI technology continues to improve, massively parallel computers will become increasingly affordable and common. However, despite the significant progress made in the field, many funda mental issues still remain unresolved. One of the most significant of these is the issue of a general purpose parallel architecture. There is currently a huge variety of parallel architectures that are either being built or proposed. The problem is whether a single parallel computer can perform efficiently on all computing applications.

Book Introduction to Parallel Programming

Download or read book Introduction to Parallel Programming written by Subodh Kumar and published by Cambridge University Press. This book was released on 2022-07-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In modern computer science, there exists no truly sequential computing system; and most advanced programming is parallel programming. This is particularly evident in modern application domains like scientific computation, data science, machine intelligence, etc. This lucid introductory textbook will be invaluable to students of computer science and technology, acting as a self-contained primer to parallel programming. It takes the reader from introduction to expertise, addressing a broad gamut of issues. It covers different parallel programming styles, describes parallel architecture, includes parallel programming frameworks and techniques, presents algorithmic and analysis techniques and discusses parallel design and performance issues. With its broad coverage, the book can be useful in a wide range of courses; and can also prove useful as a ready reckoner for professionals in the field.

Book Massively Parallel Processing Applications and Development

Download or read book Massively Parallel Processing Applications and Development written by L. Dekker and published by Elsevier. This book was released on 2013-10-22 with total page 996 pages. Available in PDF, EPUB and Kindle. Book excerpt: The contributions of a diverse selection of international hardware and software specialists are assimilated in this book's exploration of the development of massively parallel processing (MPP). The emphasis is placed on industrial applications and collaboration with users and suppliers from within the industrial community consolidates the scope of the publication. From a practical point of view, massively parallel data processing is a vital step to further innovation in all areas where large amounts of data must be processed in parallel or in a distributed manner, e.g. fluid dynamics, meteorology, seismics, molecular engineering, image processing, parallel data base processing. MPP technology can make the speed of computation higher and substantially reduce the computational costs. However, to achieve these features, the MPP software has to be developed further to create user-friendly programming systems and to become transparent for present-day computer software. Application of novel electro-optic components and devices is continuing and will be a key for much more general and powerful architectures. Vanishing of communication hardware limitations will result in the elimination of programming bottlenecks in parallel data processing. Standardization of the functional characteristics of a programming model of massively parallel computers will become established. Then efficient programming environments can be developed. The result will be a widespread use of massively parallel processing systems in many areas of application.

Book Parallel and High Performance Computing

Download or read book Parallel and High Performance Computing written by Robert Robey and published by Simon and Schuster. This book was released on 2021-08-24 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code

Book Industrial Strength Parallel Computing

Download or read book Industrial Strength Parallel Computing written by Alice Evelyn Koniges and published by Morgan Kaufmann. This book was released on 2000 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: High performance computers.

Book Programming Massively Parallel Processors

Download or read book Programming Massively Parallel Processors written by David Kirk and published by Springer. This book was released on 2010-10-01 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This groundbreaking textbook teaches readers how to program massively parallel processors to achieve high performance, and the approach does not require a great deal of hardware expertise. The presentation focuses on computational thinking techniques that enable readers to think about problems in ways that are amenable to parallel computing. Students will learn to complete a suite of API programming tools and techniques at least once, so that they will be able to apply the experience to other APIs and other tools in the future. This book teaches parallel programming for correct functionality and dependability, which constitute a subtle issue in parallel computing. Those who have worked on parallel systems in the past know that achieving initial performance is not enough. The challenge is to achieve it in such a way that you can later debug the code, reproduce the bugs when they reappear, and support the code. This book shows that with the CUDA programming model, which focuses on data parallelism, one can achieve both high-performance and high-reliability in their applications.

Book Parallel Computing Works

Download or read book Parallel Computing Works written by Geoffrey C. Fox and published by Elsevier. This book was released on 2014-06-28 with total page 977 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear illustration of how parallel computers can be successfully applied to large-scale scientific computations. This book demonstrates how a variety of applications in physics, biology, mathematics and other sciences were implemented on real parallel computers to produce new scientific results. It investigates issues of fine-grained parallelism relevant for future supercomputers with particular emphasis on hypercube architecture. The authors describe how they used an experimental approach to configure different massively parallel machines, design and implement basic system software, and develop algorithms for frequently used mathematical computations. They also devise performance models, measure the performance characteristics of several computers, and create a high-performance computing facility based exclusively on parallel computers. By addressing all issues involved in scientific problem solving, Parallel Computing Works! provides valuable insight into computational science for large-scale parallel architectures. For those in the sciences, the findings reveal the usefulness of an important experimental tool. Anyone in supercomputing and related computational fields will gain a new perspective on the potential contributions of parallelism. Includes over 30 full-color illustrations.

Book Input Output Intensive Massively Parallel Computing

Download or read book Input Output Intensive Massively Parallel Computing written by Peter Brezany and published by Springer Science & Business Media. This book was released on 1997-04-09 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Massively parallel processing is currently the most promising answer to the quest for increased computer performance. This has resulted in the development of new programming languages and programming environments and has stimulated the design and production of massively parallel supercomputers. The efficiency of concurrent computation and input/output essentially depends on the proper utilization of specific architectural features of the underlying hardware. This book focuses on development of runtime systems supporting execution of parallel code and on supercompilers automatically parallelizing code written in a sequential language. Fortran has been chosen for the presentation of the material because of its dominant role in high-performance programming for scientific and engineering applications.