Download or read book Deep Learning with Python written by Francois Chollet and published by Simon and Schuster. This book was released on 2017-11-30 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning—a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance
Download or read book Profound Python Libraries written by Önder Teker and published by Godoro. This book was released on 2022-07-08 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains Python libraries used in many applications. Internet, Downloads, JSON, REST are covered. Utilities such as time, random, regular expressions are included. The operating systems & process are explained in detail. File system operations and Pathlib are covered. Some introductions to Big Data & Artificial Intelligence are added. CSV, Samples are explained as a preperation for data science. Visual libraries such as PIL & Matplotlib are included. Speech Recognition is covered. Finally Tk is is explained & a full sample application is supplied.
Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Download or read book Effective Python written by Brett Slatkin and published by Pearson Education. This book was released on 2015 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Effective Python will help students harness the full power of Python to write exceptionally robust, efficient, maintainable, and well-performing code. Utilizing the concise, scenario-driven style pioneered in Scott Meyers's best-selling Effective C++, Brett Slatkin brings together 53 Python best practices, tips, shortcuts, and realistic code examples from expert programmers. Each section contains specific, actionable guidelines organized into items, each with carefully worded advice supported by detailed technical arguments and illuminating examples.
Download or read book Pandas for Everyone written by Daniel Y. Chen and published by Addison-Wesley Professional. This book was released on 2017-12-15 with total page 1093 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets. Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems. Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine datasets and handle missing data Reshape, tidy, and clean datasets so they’re easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large datasets with groupby Leverage Pandas’ advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the “best” Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
Download or read book Hands On Python Deep Learning for the Web written by Anubhav Singh and published by Packt Publishing Ltd. This book was released on 2020-05-15 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use the power of deep learning with Python to build and deploy intelligent web applications Key FeaturesCreate next-generation intelligent web applications using Python libraries such as Flask and DjangoImplement deep learning algorithms and techniques for performing smart web automationIntegrate neural network architectures to create powerful full-stack web applicationsBook Description When used effectively, deep learning techniques can help you develop intelligent web apps. In this book, you'll cover the latest tools and technological practices that are being used to implement deep learning in web development using Python. Starting with the fundamentals of machine learning, you'll focus on DL and the basics of neural networks, including common variants such as convolutional neural networks (CNNs). You'll learn how to integrate them into websites with the frontends of different standard web tech stacks. The book then helps you gain practical experience of developing a deep learning-enabled web app using Python libraries such as Django and Flask by creating RESTful APIs for custom models. Later, you'll explore how to set up a cloud environment for deep learning-based web deployments on Google Cloud and Amazon Web Services (AWS). Next, you'll learn how to use Microsoft's intelligent Emotion API, which can detect a person's emotions through a picture of their face. You'll also get to grips with deploying real-world websites, in addition to learning how to secure websites using reCAPTCHA and Cloudflare. Finally, you'll use NLP to integrate a voice UX through Dialogflow on your web pages. By the end of this book, you'll have learned how to deploy intelligent web apps and websites with the help of effective tools and practices. What you will learnExplore deep learning models and implement them in your browserDesign a smart web-based client using Django and FlaskWork with different Python-based APIs for performing deep learning tasksImplement popular neural network models with TensorFlow.jsDesign and build deep web services on the cloud using deep learningGet familiar with the standard workflow of taking deep learning models into productionWho this book is for This deep learning book is for data scientists, machine learning practitioners, and deep learning engineers who are looking to perform deep learning techniques and methodologies on the web. You will also find this book useful if you’re a web developer who wants to implement smart techniques in the browser to make it more interactive. Working knowledge of the Python programming language and basic machine learning techniques will be beneficial.
Download or read book Deep Learning with PyTorch written by Luca Pietro Giovanni Antiga and published by Simon and Schuster. This book was released on 2020-07-01 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: “We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production
Download or read book Python Machine Learning written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2015-09-23 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
Download or read book Python Deep Learning written by Valentino Zocca and published by Packt Publishing Ltd. This book was released on 2017-04-28 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your machine learning skills to the next level by mastering Deep Learning concepts and algorithms using Python. About This Book Explore and create intelligent systems using cutting-edge deep learning techniques Implement deep learning algorithms and work with revolutionary libraries in Python Get real-world examples and easy-to-follow tutorials on Theano, TensorFlow, H2O and more Who This Book Is For This book is for Data Science practitioners as well as aspirants who have a basic foundational understanding of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired. What You Will Learn Get a practical deep dive into deep learning algorithms Explore deep learning further with Theano, Caffe, Keras, and TensorFlow Learn about two of the most powerful techniques at the core of many practical deep learning implementations: Auto-Encoders and Restricted Boltzmann Machines Dive into Deep Belief Nets and Deep Neural Networks Discover more deep learning algorithms with Dropout and Convolutional Neural Networks Get to know device strategies so you can use deep learning algorithms and libraries in the real world In Detail With an increasing interest in AI around the world, deep learning has attracted a great deal of public attention. Every day, deep learning algorithms are used broadly across different industries. The book will give you all the practical information available on the subject, including the best practices, using real-world use cases. You will learn to recognize and extract information to increase predictive accuracy and optimize results. Starting with a quick recap of important machine learning concepts, the book will delve straight into deep learning principles using Sci-kit learn. Moving ahead, you will learn to use the latest open source libraries such as Theano, Keras, Google's TensorFlow, and H20. Use this guide to uncover the difficulties of pattern recognition, scaling data with greater accuracy and discussing deep learning algorithms and techniques. Whether you want to dive deeper into Deep Learning, or want to investigate how to get more out of this powerful technology, you'll find everything inside. Style and approach Python Machine Learning by example follows practical hands on approach. It walks you through the key elements of Python and its powerful machine learning libraries with the help of real world projects.
Download or read book Practical Deep Learning written by Ronald T. Kneusel and published by No Starch Press. This book was released on 2021-02-23 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Deep Learning teaches total beginners how to build the datasets and models needed to train neural networks for your own DL projects. If you’ve been curious about machine learning but didn’t know where to start, this is the book you’ve been waiting for. Focusing on the subfield of machine learning known as deep learning, it explains core concepts and gives you the foundation you need to start building your own models. Rather than simply outlining recipes for using existing toolkits, Practical Deep Learning teaches you the why of deep learning and will inspire you to explore further. All you need is basic familiarity with computer programming and high school math—the book will cover the rest. After an introduction to Python, you’ll move through key topics like how to build a good training dataset, work with the scikit-learn and Keras libraries, and evaluate your models’ performance. You’ll also learn: How to use classic machine learning models like k-Nearest Neighbors, Random Forests, and Support Vector Machines How neural networks work and how they’re trained How to use convolutional neural networks How to develop a successful deep learning model from scratch You’ll conduct experiments along the way, building to a final case study that incorporates everything you’ve learned. The perfect introduction to this dynamic, ever-expanding field, Practical Deep Learning will give you the skills and confidence to dive into your own machine learning projects.
Download or read book Artificial Intelligence with Python written by Prateek Joshi and published by Packt Publishing Ltd. This book was released on 2017-01-27 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Download or read book Python Deep learning written by and published by Kalyanasundaram K. This book was released on 2023-07-15 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Python Deep Learning" is an extensive and insightful guide that takes readers on a captivating journey into the realm of deep learning using Python. Designed for aspiring data scientists, machine learning enthusiasts, and Python programmers, this book provides a comprehensive introduction to the principles and techniques of deep learning. From foundational concepts to advanced applications, readers will gain hands-on experience with popular deep learning libraries such as TensorFlow and Keras. Through a series of practical examples and exercises, this book equips readers with the knowledge and skills to build and train neural networks, tackle complex problems, and unleash the full potential of deep learning in Python. Whether you are a beginner or an experienced practitioner, "Python Deep Learning" will empower you to harness the power of deep learning algorithms and revolutionize the way you approach data analysis and pattern recognition.
Download or read book Programming Machine Learning written by Paolo Perrotta and published by Pragmatic Bookshelf. This book was released on 2020-03-31 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its reliance on math and algorithms that most programmers don't encounter in their regular work. Take a hands-on approach, writing the Python code yourself, without any libraries to obscure what's really going on. Iterate on your design, and add layers of complexity as you go. Build an image recognition application from scratch with supervised learning. Predict the future with linear regression. Dive into gradient descent, a fundamental algorithm that drives most of machine learning. Create perceptrons to classify data. Build neural networks to tackle more complex and sophisticated data sets. Train and refine those networks with backpropagation and batching. Layer the neural networks, eliminate overfitting, and add convolution to transform your neural network into a true deep learning system. Start from the beginning and code your way to machine learning mastery. What You Need: The examples in this book are written in Python, but don't worry if you don't know this language: you'll pick up all the Python you need very quickly. Apart from that, you'll only need your computer, and your code-adept brain.
Download or read book Deep Learning With Python written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2016-05-13 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is the most interesting and powerful machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine learning projects.
Download or read book CPython Internals written by Anthony Shaw and published by . This book was released on 2021-05-05 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get your guided tour through the Python 3.9 interpreter: Unlock the inner workings of the Python language, compile the Python interpreter from source code, and participate in the development of CPython. Are there certain parts of Python that just seem like magic? This book explains the concepts, ideas, and technicalities of the Python interpreter in an approachable and hands-on fashion. Once you see how Python works at the interpreter level, you can optimize your applications and fully leverage the power of Python. By the End of the Book You'll Be Able To: Read and navigate the CPython 3.9 interpreter source code. You'll deeply comprehend and appreciate the inner workings of concepts like lists, dictionaries, and generators. Make changes to the Python syntax and compile your own version of CPython, from scratch. You'll customize the Python core data types with new functionality and run CPython's automated test suite. Master Python's memory management capabilities and scale your Python code with parallelism and concurrency. Debug C and Python code like a true professional. Profile and benchmark the performance of your Python code and the runtime. Participate in the development of CPython and know how to contribute to future versions of the Python interpreter and standard library. How great would it feel to give back to the community as a "Python Core Developer?" With this book you'll cover the critical concepts behind the internals of CPython and how they work with visual explanations as you go along. Each page in the book has been carefully laid out with beautiful typography, syntax highlighting for code examples. What Python Developers Say About The Book: "It's the book that I wish existed years ago when I started my Python journey. [...] After reading this book your skills will grow and you will be able solve even more complex problems that can improve our world." - Carol Willing, CPython Core Developer & Member of the CPython Steering Council "CPython Internals is a great (and unique) resource for anybody looking to take their knowledge of Python to a deeper level." - Dan Bader, Author of Python Tricks "There are a ton of books on Python which teach the language, but I haven't really come across anything that would go about explaining the internals to those curious minded." - Milan Patel, Vice President at (a major investment bank)
Download or read book Powerful Python written by Aaron Maxwell and published by "O'Reilly Media, Inc.". This book was released on 2024-11-08 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Once you've mastered the basics of Python, how do you skill up to the top 1%? How do you focus your learning time on topics that yield the most benefit for production engineering and data teams—without getting distracted by info of little real-world use? This book answers these questions and more. Based on author Aaron Maxwell's software engineering career in Silicon Valley, this unique book focuses on the Python first principles that act to accelerate everything else: the 5% of programming knowledge that makes the remaining 95% fall like dominos. It's also this knowledge that helps you become an exceptional Python programmer, fast. Learn how to think like a Pythonista: explore advanced Pythonic thinking Create lists, dicts, and other data structures using a high-level, readable, and maintainable syntax Explore higher-order function abstractions that form the basis of Python libraries Examine Python's metaprogramming tool for priceless patterns of code reuse Master Python's error model and learn how to leverage it in your own code Learn the more potent and advanced tools of Python's object system Take a deep dive into Python's automated testing and TDD Learn how Python logging helps you troubleshoot and debug more quickly
Download or read book Grokking Deep Learning written by Andrew W. Trask and published by Simon and Schuster. This book was released on 2019-01-23 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide