EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Heterogeneous Computing with OpenCL

Download or read book Heterogeneous Computing with OpenCL written by Benedict Gaster and published by Newnes. This book was released on 2012-11-13 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heterogeneous Computing with OpenCL, Second Edition teaches OpenCL and parallel programming for complex systems that may include a variety of device architectures: multi-core CPUs, GPUs, and fully-integrated Accelerated Processing Units (APUs) such as AMD Fusion technology. It is the first textbook that presents OpenCL programming appropriate for the classroom and is intended to support a parallel programming course. Students will come away from this text with hands-on experience and significant knowledge of the syntax and use of OpenCL to address a range of fundamental parallel algorithms. Designed to work on multiple platforms and with wide industry support, OpenCL will help you more effectively program for a heterogeneous future. Written by leaders in the parallel computing and OpenCL communities, Heterogeneous Computing with OpenCL explores memory spaces, optimization techniques, graphics interoperability, extensions, and debugging and profiling. It includes detailed examples throughout, plus additional online exercises and other supporting materials that can be downloaded at http://www.heterogeneouscompute.org/?page_id=7 This book will appeal to software engineers, programmers, hardware engineers, and students/advanced students. Explains principles and strategies to learn parallel programming with OpenCL, from understanding the four abstraction models to thoroughly testing and debugging complete applications. Covers image processing, web plugins, particle simulations, video editing, performance optimization, and more. Shows how OpenCL maps to an example target architecture and explains some of the tradeoffs associated with mapping to various architectures Addresses a range of fundamental programming techniques, with multiple examples and case studies that demonstrate OpenCL extensions for a variety of hardware platforms

Book Pro TBB

    Book Details:
  • Author : Michael Voss
  • Publisher : Apress
  • Release : 2019-07-09
  • ISBN : 1484243986
  • Pages : 775 pages

Download or read book Pro TBB written by Michael Voss and published by Apress. This book was released on 2019-07-09 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is a modern guide for all C++ programmers to learn Threading Building Blocks (TBB). Written by TBB and parallel programming experts, this book reflects their collective decades of experience in developing and teaching parallel programming with TBB, offering their insights in an approachable manner. Throughout the book the authors present numerous examples and best practices to help you become an effective TBB programmer and leverage the power of parallel systems. Pro TBB starts with the basics, explaining parallel algorithms and C++'s built-in standard template library for parallelism. You'll learn the key concepts of managing memory, working with data structures and how to handle typical issues with synchronization. Later chapters apply these ideas to complex systems to explain performance tradeoffs, mapping common parallel patterns, controlling threads and overhead, and extending TBB to program heterogeneous systems or system-on-chips. What You'll Learn Use Threading Building Blocks to produce code that is portable, simple, scalable, and more understandableReview best practices for parallelizing computationally intensive tasks in your applications Integrate TBB with other threading packages Create scalable, high performance data-parallel programs Work with generic programming to write efficient algorithms Who This Book Is For C++ programmers learning to run applications on multicore systems, as well as C or C++ programmers without much experience with templates. No previous experience with parallel programming or multicore processors is required.

Book Professional CUDA C Programming

Download or read book Professional CUDA C Programming written by John Cheng and published by John Wiley & Sons. This book was released on 2014-09-09 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Break into the powerful world of parallel GPU programming with this down-to-earth, practical guide Designed for professionals across multiple industrial sectors, Professional CUDA C Programming presents CUDA -- a parallel computing platform and programming model designed to ease the development of GPU programming -- fundamentals in an easy-to-follow format, and teaches readers how to think in parallel and implement parallel algorithms on GPUs. Each chapter covers a specific topic, and includes workable examples that demonstrate the development process, allowing readers to explore both the "hard" and "soft" aspects of GPU programming. Computing architectures are experiencing a fundamental shift toward scalable parallel computing motivated by application requirements in industry and science. This book demonstrates the challenges of efficiently utilizing compute resources at peak performance, presents modern techniques for tackling these challenges, while increasing accessibility for professionals who are not necessarily parallel programming experts. The CUDA programming model and tools empower developers to write high-performance applications on a scalable, parallel computing platform: the GPU. However, CUDA itself can be difficult to learn without extensive programming experience. Recognized CUDA authorities John Cheng, Max Grossman, and Ty McKercher guide readers through essential GPU programming skills and best practices in Professional CUDA C Programming, including: CUDA Programming Model GPU Execution Model GPU Memory model Streams, Event and Concurrency Multi-GPU Programming CUDA Domain-Specific Libraries Profiling and Performance Tuning The book makes complex CUDA concepts easy to understand for anyone with knowledge of basic software development with exercises designed to be both readable and high-performance. For the professional seeking entrance to parallel computing and the high-performance computing community, Professional CUDA C Programming is an invaluable resource, with the most current information available on the market.

Book Data Parallel C

    Book Details:
  • Author : James Reinders
  • Publisher : Apress
  • Release : 2020-11-19
  • ISBN : 9781484255735
  • Pages : 548 pages

Download or read book Data Parallel C written by James Reinders and published by Apress. This book was released on 2020-11-19 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to accelerate C++ programs using data parallelism. This open access book enables C++ programmers to be at the forefront of this exciting and important new development that is helping to push computing to new levels. It is full of practical advice, detailed explanations, and code examples to illustrate key topics. Data parallelism in C++ enables access to parallel resources in a modern heterogeneous system, freeing you from being locked into any particular computing device. Now a single C++ application can use any combination of devices—including GPUs, CPUs, FPGAs and AI ASICs—that are suitable to the problems at hand. This book begins by introducing data parallelism and foundational topics for effective use of the SYCL standard from the Khronos Group and Data Parallel C++ (DPC++), the open source compiler used in this book. Later chapters cover advanced topics including error handling, hardware-specific programming, communication and synchronization, and memory model considerations. Data Parallel C++ provides you with everything needed to use SYCL for programming heterogeneous systems. What You'll Learn Accelerate C++ programs using data-parallel programming Target multiple device types (e.g. CPU, GPU, FPGA) Use SYCL and SYCL compilers Connect with computing’s heterogeneous future via Intel’s oneAPI initiative Who This Book Is For Those new data-parallel programming and computer programmers interested in data-parallel programming using C++.

Book Numerical Computations with GPUs

Download or read book Numerical Computations with GPUs written by Volodymyr Kindratenko and published by Springer. This book was released on 2014-07-03 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.

Book OpenCL Programming Guide

Download or read book OpenCL Programming Guide written by Aaftab Munshi and published by Pearson Education. This book was released on 2011-07-07 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using the new OpenCL (Open Computing Language) standard, you can write applications that access all available programming resources: CPUs, GPUs, and other processors such as DSPs and the Cell/B.E. processor. Already implemented by Apple, AMD, Intel, IBM, NVIDIA, and other leaders, OpenCL has outstanding potential for PCs, servers, handheld/embedded devices, high performance computing, and even cloud systems. This is the first comprehensive, authoritative, and practical guide to OpenCL 1.1 specifically for working developers and software architects. Written by five leading OpenCL authorities, OpenCL Programming Guide covers the entire specification. It reviews key use cases, shows how OpenCL can express a wide range of parallel algorithms, and offers complete reference material on both the API and OpenCL C programming language. Through complete case studies and downloadable code examples, the authors show how to write complex parallel programs that decompose workloads across many different devices. They also present all the essentials of OpenCL software performance optimization, including probing and adapting to hardware. Coverage includes Understanding OpenCL’s architecture, concepts, terminology, goals, and rationale Programming with OpenCL C and the runtime API Using buffers, sub-buffers, images, samplers, and events Sharing and synchronizing data with OpenGL and Microsoft’s Direct3D Simplifying development with the C++ Wrapper API Using OpenCL Embedded Profiles to support devices ranging from cellphones to supercomputer nodes Case studies dealing with physics simulation; image and signal processing, such as image histograms, edge detection filters, Fast Fourier Transforms, and optical flow; math libraries, such as matrix multiplication and high-performance sparse matrix multiplication; and more Source code for this book is available at https://code.google.com/p/opencl-book-samples/

Book The Cg Tutorial

    Book Details:
  • Author : Randima Fernando
  • Publisher : Addison-Wesley Professional
  • Release : 2003
  • ISBN : 9780321194961
  • Pages : 402 pages

Download or read book The Cg Tutorial written by Randima Fernando and published by Addison-Wesley Professional. This book was released on 2003 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cg is a complete programming environment for the fast creation of special effects and real-time cinematic quality experiences on multiple platforms. This text provides a guide to the Cg graphics language.

Book CUDA by Example

    Book Details:
  • Author : Jason Sanders
  • Publisher : Addison-Wesley Professional
  • Release : 2010-07-19
  • ISBN : 0132180138
  • Pages : 524 pages

Download or read book CUDA by Example written by Jason Sanders and published by Addison-Wesley Professional. This book was released on 2010-07-19 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html

Book CUDA Programming

    Book Details:
  • Author : Shane Cook
  • Publisher : Newnes
  • Release : 2012-11-13
  • ISBN : 0124159338
  • Pages : 592 pages

Download or read book CUDA Programming written by Shane Cook and published by Newnes. This book was released on 2012-11-13 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'CUDA Programming' offers a detailed guide to CUDA with a grounding in parallel fundamentals. It starts by introducing CUDA and bringing you up to speed on GPU parallelism and hardware, then delving into CUDA installation.

Book Introduction to 3D Game Programming with DirectX 11

Download or read book Introduction to 3D Game Programming with DirectX 11 written by Frank Luna and published by Mercury Learning and Information. This book was released on 2012-03-15 with total page 1029 pages. Available in PDF, EPUB and Kindle. Book excerpt: This updated bestseller provides an introduction to programming interactive computer graphics, with an emphasis on game development using DirectX 11. The book is divided into three main parts: basic mathematical tools, fundamental tasks in Direct3D, and techniques and special effects. It includes new Direct3D 11 features such as hardware tessellation, the compute shader, dynamic shader linkage and covers advanced rendering techniques such as screen-space ambient occlusion, level-of-detail handling, cascading shadow maps, volume rendering, and character animation. Includes a companion CD-ROM with code and figures. eBook Customers: Companion files are available for downloading with order number/proof of purchase by writing to the publisher at [email protected].

Book Distributed and Cloud Computing

Download or read book Distributed and Cloud Computing written by Kai Hwang and published by Morgan Kaufmann. This book was released on 2013-12-18 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things offers complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing. It is the first modern, up-to-date distributed systems textbook; it explains how to create high-performance, scalable, reliable systems, exposing the design principles, architecture, and innovative applications of parallel, distributed, and cloud computing systems. Topics covered by this book include: facilitating management, debugging, migration, and disaster recovery through virtualization; clustered systems for research or ecommerce applications; designing systems as web services; and social networking systems using peer-to-peer computing. The principles of cloud computing are discussed using examples from open-source and commercial applications, along with case studies from the leading distributed computing vendors such as Amazon, Microsoft, and Google. Each chapter includes exercises and further reading, with lecture slides and more available online. This book will be ideal for students taking a distributed systems or distributed computing class, as well as for professional system designers and engineers looking for a reference to the latest distributed technologies including cloud, P2P and grid computing. - Complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing - Includes case studies from the leading distributed computing vendors: Amazon, Microsoft, Google, and more - Explains how to use virtualization to facilitate management, debugging, migration, and disaster recovery - Designed for undergraduate or graduate students taking a distributed systems course—each chapter includes exercises and further reading, with lecture slides and more available online

Book CUDA Handbook

    Book Details:
  • Author : Nicholas Wilt
  • Publisher : Addison-Wesley
  • Release : 2013-06-11
  • ISBN : 0133261506
  • Pages : 526 pages

Download or read book CUDA Handbook written by Nicholas Wilt and published by Addison-Wesley. This book was released on 2013-06-11 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: The CUDA Handbook begins where CUDA by Example (Addison-Wesley, 2011) leaves off, discussing CUDA hardware and software in greater detail and covering both CUDA 5.0 and Kepler. Every CUDA developer, from the casual to the most sophisticated, will find something here of interest and immediate usefulness. Newer CUDA developers will see how the hardware processes commands and how the driver checks progress; more experienced CUDA developers will appreciate the expert coverage of topics such as the driver API and context migration, as well as the guidance on how best to structure CPU/GPU data interchange and synchronization. The accompanying open source code–more than 25,000 lines of it, freely available at www.cudahandbook.com–is specifically intended to be reused and repurposed by developers. Designed to be both a comprehensive reference and a practical cookbook, the text is divided into the following three parts: Part I, Overview, gives high-level descriptions of the hardware and software that make CUDA possible. Part II, Details, provides thorough descriptions of every aspect of CUDA, including Memory Streams and events Models of execution, including the dynamic parallelism feature, new with CUDA 5.0 and SM 3.5 The streaming multiprocessors, including descriptions of all features through SM 3.5 Programming multiple GPUs Texturing The source code accompanying Part II is presented as reusable microbenchmarks and microdemos, designed to expose specific hardware characteristics or highlight specific use cases. Part III, Select Applications, details specific families of CUDA applications and key parallel algorithms, including Streaming workloads Reduction Parallel prefix sum (Scan) N-body Image Processing These algorithms cover the full range of potential CUDA applications.

Book High Performance Computing Using FPGAs

Download or read book High Performance Computing Using FPGAs written by Wim Vanderbauwhede and published by Springer Science & Business Media. This book was released on 2013-08-23 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.

Book Hands On GPU Programming with CUDA

Download or read book Hands On GPU Programming with CUDA written by Jaegeun Han and published by . This book was released on 2019-09-27 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore different GPU programming methods using libraries and directives, such as OpenACC, with extension to languages such as C, C++, and Python Key Features Learn parallel programming principles and practices and performance analysis in GPU computing Get to grips with distributed multi GPU programming and other approaches to GPU programming Understand how GPU acceleration in deep learning models can improve their performance Book Description Compute Unified Device Architecture (CUDA) is NVIDIA's GPU computing platform and application programming interface. It's designed to work with programming languages such as C, C++, and Python. With CUDA, you can leverage a GPU's parallel computing power for a range of high-performance computing applications in the fields of science, healthcare, and deep learning. Learn CUDA Programming will help you learn GPU parallel programming and understand its modern applications. In this book, you'll discover CUDA programming approaches for modern GPU architectures. You'll not only be guided through GPU features, tools, and APIs, you'll also learn how to analyze performance with sample parallel programming algorithms. This book will help you optimize the performance of your apps by giving insights into CUDA programming platforms with various libraries, compiler directives (OpenACC), and other languages. As you progress, you'll learn how additional computing power can be generated using multiple GPUs in a box or in multiple boxes. Finally, you'll explore how CUDA accelerates deep learning algorithms, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs). By the end of this CUDA book, you'll be equipped with the skills you need to integrate the power of GPU computing in your applications. What you will learn Understand general GPU operations and programming patterns in CUDA Uncover the difference between GPU programming and CPU programming Analyze GPU application performance and implement optimization strategies Explore GPU programming, profiling, and debugging tools Grasp parallel programming algorithms and how to implement them Scale GPU-accelerated applications with multi-GPU and multi-nodes Delve into GPU programming platforms with accelerated libraries, Python, and OpenACC Gain insights into deep learning accelerators in CNNs and RNNs using GPUs Who this book is for This beginner-level book is for programmers who want to delve into parallel computing, become part of the high-performance computing community and build modern applications. Basic C and C++ programming experience is assumed. For deep learning enthusiasts, this book covers Python InterOps, DL libraries, and practical examples on performance estimation.

Book Programming Massively Parallel Processors

Download or read book Programming Massively Parallel Processors written by David B. Kirk and published by Newnes. This book was released on 2012-12-31 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: Programming Massively Parallel Processors: A Hands-on Approach, Second Edition, teaches students how to program massively parallel processors. It offers a detailed discussion of various techniques for constructing parallel programs. Case studies are used to demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs. This guide shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in depth. This revised edition contains more parallel programming examples, commonly-used libraries such as Thrust, and explanations of the latest tools. It also provides new coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more; increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism; and two new case studies (on MRI reconstruction and molecular visualization) that explore the latest applications of CUDA and GPUs for scientific research and high-performance computing. This book should be a valuable resource for advanced students, software engineers, programmers, and hardware engineers. - New coverage of CUDA 5.0, improved performance, enhanced development tools, increased hardware support, and more - Increased coverage of related technology, OpenCL and new material on algorithm patterns, GPU clusters, host programming, and data parallelism - Two new case studies (on MRI reconstruction and molecular visualization) explore the latest applications of CUDA and GPUs for scientific research and high-performance computing

Book Vector Models for Data parallel Computing

Download or read book Vector Models for Data parallel Computing written by Guy E. Blelloch and published by MIT Press (MA). This book was released on 1990 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.

Book Optimizing Compilers for Modern Architectures  A Dependence Based Approach

Download or read book Optimizing Compilers for Modern Architectures A Dependence Based Approach written by Randy Allen and published by Morgan Kaufmann Publishers. This book was released on 2001-10 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer architectures designed with high-performance microprocessors offer tremendous potential gains in performance over previous designs. Yet their very complexity makes it increasingly difficult to produce efficient code and to realize their full potential. This landmark text from two leaders in the field focuses on the pivotal role that compilers can play in addressing this critical issue. The basis for all the methods presented in this book is data dependence, a fundamental compiler analysis tool for optimizing programs on high-performance microprocessors and parallel architectures. It enables compiler designers to write compilers that automatically transform simple, sequential programs into forms that can exploit special features of these modern architectures. The text provides a broad introduction to data dependence, to the many transformation strategies it supports, and to its applications to important optimization problems such as parallelization, compiler memory hierarchy management, and instruction scheduling. The authors demonstrate the importance and wide applicability of dependence-based compiler optimizations and give the compiler writer the basics needed to understand and implement them. They also offer cookbook explanations for transforming applications by hand to computational scientists and engineers who are driven to obtain the best possible performance of their complex applications. The approaches presented are based on research conducted over the past two decades, emphasizing the strategies implemented in research prototypes at Rice University and in several associated commercial systems. Randy Allen and Ken Kennedy have provided an indispensable resource for researchers, practicing professionals, and graduate students engaged in designing and optimizing compilers for modern computer architectures. * Offers a guide to the simple, practical algorithms and approaches that are most effective in real-world, high-performance microprocessor and parallel systems. * Demonstrates each transformation in worked examples. * Examines how two case study compilers implement the theories and practices described in each chapter. * Presents the most complete treatment of memory hierarchy issues of any compiler text. * Illustrates ordering relationships with dependence graphs throughout the book. * Applies the techniques to a variety of languages, including Fortran 77, C, hardware definition languages, Fortran 90, and High Performance Fortran. * Provides extensive references to the most sophisticated algorithms known in research.