EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Processing and Characterization of P Type Doped Zinc Oxide Thin Films

Download or read book Processing and Characterization of P Type Doped Zinc Oxide Thin Films written by Michelle Anne Myers and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Applications of zinc oxide (ZnO) for optoelectronic devices, including light emitting diodes, semiconductor lasers, and solar cells have not yet been realized due to the lack of high-quality p-type ZnO. In the research presented herein, pulsed laser deposition is employed to grow Ag-doped ZnO thin films, which are characterized in an attempt to understand the ability of Ag to act as a p-type dopant. By correlating the effects of the substrate temperature, oxygen pressure, and laser energy on the electrical and microstructural properties of Ag-doped ZnO films grown on c-cut sapphire substrates, p-type conductivity is achieved under elevated substrate temperatures. Characteristic stacking fault features have been continuously observed by transmission electron microscopy in all of the p-type films. Photoluminescence studies on n-type and p-type Ag-doped ZnO thin films demonstrate the role of stacking faults in determining the conductivity of the films. Exciton emission attributed to basal plane stacking faults suggests that the acceptor impurities are localized nearby the stacking faults in the n-type films. The photoluminescence investigation provides a correlation between microstructural characteristics and electrical properties of Ag- doped ZnO thin films; a link that enables further understanding of the doping nature of Ag impurities in ZnO. Under optimized deposition conditions, various substrates are investigated as potential candidates for ZnO thin film growth, including r -cut sapphire, quartz, and amorphous glass. Electrical results indicated that despite narrow conditions for obtaining p-type conductivity at a given substrate temperature, flexibility in substrate choice enables improved electrical properties. In parallel, N+-ion implantation at elevated temperatures is explored as an alternative approach to achieve p-type ZnO. The ion implantation fluence and temperature have been optimized to achieve p-type conductivity. Transmission electron microscopy reveals that characteristic stacking fault features are present throughout the p-type films, however in n-type N-doped films high-density defect clusters are observed. These results suggest that the temperature under which ion implantation is performed plays a critical role in determining the amount of dynamic defect re- combination that can take place, as well as defect cluster formation processes. Ion implantation at elevated temperatures is shown to be an effective method to introduce increased concentrations of p-type N dopants while reducing the amount of stable post-implantation disorder. Finally, the fabrication and properties of p-type Ag-doped ZnO/n-type ZnO and p-type N-doped ZnO/n-type ZnO thin film junctions were reported. For the N-doped sample, a rectifying behavior was observed in the I-V curve, consistent with N-doped ZnO being p-type and forming a p-n junction. The turn-on voltage of the device was -2.3 V under forward bias. The Ag-doped samples did not result in rectifying behavior as a result of conversion of the p-type layer to n-type behavior under the n- type layer deposition conditions. The systematic studies in this dissertation provide possible routes to grow p-type Ag-doped ZnO films and in-situ thermal activation of N-implanted dopant ions, to overcome the growth temperature limits, and to push one step closer to the future integration of ZnO-based devices. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149354

Book Zinc Oxide Bulk  Thin Films and Nanostructures

Download or read book Zinc Oxide Bulk Thin Films and Nanostructures written by Chennupati Jagadish and published by Elsevier. This book was released on 2011-10-10 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: With an in-depth exploration of the following topics, this book covers the broad uses of zinc oxide within the fields of materials science and engineering: - Recent advances in bulk , thin film and nanowire growth of ZnO (including MBE, MOCVD and PLD), - The characterization of the resulting material (including the related ternary systems ZgMgO and ZnCdO), - Improvements in device processing modules (including ion implantation for doping and isolation ,Ohmic and Schottky contacts , wet and dry etching), - The role of impurities and defects on materials properties - Applications of ZnO in UV light emitters/detectors, gas, biological and chemical-sensing, transparent electronics, spintronics and thin film

Book Les Enfants d Edouard

Download or read book Les Enfants d Edouard written by and published by . This book was released on 1909 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Electrical Characterization of ZnO thin films grown by molecular beam epitaxy

Download or read book Electrical Characterization of ZnO thin films grown by molecular beam epitaxy written by Vladimir Petukhov and published by Cuvillier Verlag. This book was released on 2012-04-25 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the electronic and optoelectronic device realization a precise control of the electrical properties in the utilized material is a very important issue. Doping profiles in realized p-njunctions influence the functionality of the devices. The morphological and crystal properties of a device material directly influence the electrical ones. Dislocations present in a region of p-n-junctions can short circuit them leading to malfunctions. Too rough surfaces during epitaxial growth could lead to inhomogeneities in a single or multiple quantum wells and superlattices. The main goal of the present work was to provide the basis for a reliable p-type doping of ZnO grown by molecular beam epitaxy. Firstly, the well established heteroepitaxial growth on c-sapphire substrates has been employed. Based on the theoretical and experimental works, suggesting nitrogen to be the impurity that builds the most shallow acceptor level in ZnO comparing to other group-V elements, it has been implied as a dopant. To generate reactive nitrogen atoms an rf-plasma source has been utilized in the MBE process. The resulting samples have been characterized by such methods as AFM, XRD, TEM, PL spectroscopy, temperature domain Hall measurements (TDHM) and ECV-profiling. First results of TDHM have shown that even in undoped samples the temperature dependencies of the electron mobility and carrier concentration have regions which are difficult to interpret. It is necessary to fit them with theoretical curves in order to extract the correct values. This task has proven to be very difficult. The complicated character of the dependencies has been explained in terms of the multilayer conduction model dividing a layer in thin interfacial region with mobility and carrier concentration μ1 and n1 respectivly and bulk region with a higher mobility μ2 and lower carrier concentration n2. The electrical transport in the bulk region has been modeled in terms of the general scattering theory in polar semiconductors. Such scattering mechanisms as scattering on polar-optical phonons, piezoelectric phonons, acoustic deformation potential, strain induced fields, dislocations, ionized and neutral impurities have been taken into account. Two cases have been considered to model transport in the interfacial region: 1) transport takes place in the conduction band of a highly doped degenerate semiconductor; 2) transport takes place in the impurity band formed by intermediate concentration of impurities and in conduction band in parallel. In the second case transport at the interface in conduction band has been neglected in the region of the low temperatures due to the impurities freeze-out and carrier concentration has been taken temperature independent like in the first case. To investigate experimentally the transport character in these two regions independently a mobility-spectrum analysis has been conducted. Theoretical results utilizing the two models have been compared with experimentally extracted mobility and carrier concentration in the interfacial region. It has been concluded that the concentration of donors in the layers is not high enough for the impurity band to merge with the conduction band and the second model is more consistent. The theoretically acquired donor concentration profiles have been compared with ECV-profiles. The agreement is very good. Simulations have revealed a shallow donor state with the ionization energy of approximately 45 meV . In the literature, this donor state in ZnO is attributed to hydrogen. However, due to the high diffusion mobility of hydrogen in ZnO, an annealing process would obviously decrease the carrier concentration in the samples which has not been the case. It has been suggested that the main donor centers are the electrically active crystal point defects generated by dislocations. Layers doped with nitrogen have been grown at very low temperatures (≈ 200°C) and at temperatures ranging from 400°C to 500°C, which are optimal for the epitaxial growth of ZnO. The samples grown at low temperatures are single crystalline with mosaic structure. In both cases, the introduction of the dopant increased the carrier concentration. This has been accounted for a bad crystal quality resulting in the inhomogeneous incorporation of nitrogen and for high background donor concentration due to the high dislocations densities. Additionally, the incorporation of acceptor centers shifts the Fermi-level increasing the formation probability of the compensating point defects. The analysis of TDHM showed an inconsistency of the one donor level model in the case of nitrogen doped samples. This fact and the decrease in the carrier concentration after annealing at 800°C for 30 minutes in ambient air can be explained by nitrogen forming donor-like defect complexes. In an attempt to improve the crystal quality of the heteroepitaxial layers, 15 periods of a ZnO/Zn0.6Mg0.4O superlattice structure have been inserted between the conventional double HT-MgO/LT-ZnO buffer and a main HT-ZnO layer. TDHM has revealed a very high mobility close to the values measured in a bulk ZnO for the temperature range of 20 - 300 K. However, TEM investigations of the samples have not indicated any decrease in the dislocation density comparing with the similar samples without a superlattice. Such a high mobility has been attributed to an electron transport in the superlattice structure. Heteroepitaxial growth of high quality ZnO-layers has proven to be challenging leaving the homoepitaxial growth as the only possibility to obtain the epitaxial layers with the best structural and electrical properties. The hydrothermally grown bulk ZnO substrates from two supplying companies, CrysTec and TokyoDenpa, have been employed for homoepitaxy. The substrates from CrysTec have not been epi-ready. Although AFM images reveal very flat surface, this has been damaged by the process of the chemomechanical polishing. This damaged layer must be removed. This has been achieved by the thermal annealing for 3 hours at 1050°C in ambient air. The thermally treated surfaces resulted in atomically flat terraces. XRD measurements have indicated an improvement of the crystal quality after annealing. The resistivity of the bulk substrates decreased after the thermal treatment due to out-diffusion of the compensating Li atoms letting Al, Ga and In atoms to contribute to conduction. After the longer annealing processes the etch-pits have been discovered on O-polar faces. The same features could be achieved by the chemical etching in a nitric acid on Zn-polar faces. The density of the threading dislocations on both polar faces for both types of substrates calculated by the etch-pit density investigation is about 105 1/cm2. Further the thermally treated substrates with atomically flat terraces have been utilized for homoepitaxy. The differences in growth kinetics during the molecular beam epitaxy on such substrates with the improved surface quality depending on their polarity have been investigated by RHEED measurements. The growth on a Zn-polar face has a 3D-character independently on a supplier. Morphologies of the resulting O- and Zn-polar layers have shown to be different. This has been explained by the presence of dangling bonds on Opolar face and thus, shorter diffusion time of the impinging Zn atoms on the surface. XRD and TEM measurements have shown a perfect crystal quality of the overgrown layers. The PL spectra of homoepitaxial layers are governed by the donor impurities diffused from the substrates. Considering the SIMS measurements of homoepitaxial layers found in the literature it has been concluded that the diffusion of donors in the layers grown on Zn-polar faces takes less effect then for the O-polar films. This conclusion has enforced the utilization of Zn-polar substrates supplied by CrysTec for the experiments with nitrogen doping of ZnO because of their affordable price. The electrical properties measured by ECV-profiling in series of homoepitaxial layers with varied growth parameters have shown an increase of the carrier concentration with the nitrogen incorporation. In addition, it has also been shown that the resulting electrical properties near the interface are governed mostly by the initial properties of the substrates. With increasing thickness of the layers carrier concentration saturated to the values of around 1016 1/cm3. The recent successful realization of the p-type MgZnO layers on TokyoDenpa substrates by researchers from Japan suggests switching to the p-type doped alloys because the above discussed results indicate that p-type doping with nitrogen of a pure ZnO is very difficult or even impossible. This is due to a rather fundamental reason: the formation of the compensating donor centers with the incorporation of acceptor atoms. As the first step in the future works, it is obvious to try to reproduce the results of the ZnMgO p-type doping with nitrogen employing growth on ZnO substrates.

Book ZnO Thin Films

Download or read book ZnO Thin Films written by Paolo Mele and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc oxide (ZnO) is an n-type semiconductor with versatile applications such as optical devices in ultraviolet region, piezoelectric transducers, transparent electrode for solar cells and gas sensors. This book "ZnO Thin Films: Properties, Performance and Applications" gives a deep insight in the intriguing science of zinc oxide thin films. It is devoted to cover the most recent advances and reviews the state of the art of ZnO thin films applications involving energy harvesting, microelectronics, magnetic devices, photocatalysis, photovoltaics, optics, thermoelectricity, piezoelectricity, electrochemistry, temperature sensing. It serves as a fundamental information source on the techniques and methodologies involved in zinc oxide thin films growth, characterization, post-deposition plasma treatments and device processing. This book will be invaluable to the experts to consolidate their knowledge and provide insight and inspiration to beginners wishing to learn about zinc oxide thin films.

Book ZnO Thin Films for Optoelectronic Applications

Download or read book ZnO Thin Films for Optoelectronic Applications written by Prasada Rao Talakonda and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zinc oxide (ZnO) thin films have good electro-optical properties suitable for opto-electronic applications. The present study explains the deposition and characterization of n-type and p-type ZnO thin films by spray pyrolysis. The films were characterized by different methods to understand their structural, optical and electrical properties. Gallium was chosen as the impurity dopant in ZnO films to improve the electrical properties. The electrical conductivity, carrier concentration and mobility of Ga doped ZnO (GZO) films were highly improved in comparison to undoped ZnO films. The GZO films showed good optical transmittance in the visible region. The electrical and optical results suggest that the GZO films are suitable to use as a TCO in optoelectronic industries. The p-type ZnO thin films were successesfully realized using dual acceptor method. The Hall measurements and room temperature photolumiscence results were supported p-type nature of (Li, N): ZnO thin films.

Book Handbook of Zinc Oxide and Related Materials

Download or read book Handbook of Zinc Oxide and Related Materials written by Zhe Chuan Feng and published by CRC Press. This book was released on 2012-09-26 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through their application in energy-efficient and environmentally friendly devices, zinc oxide (ZnO) and related classes of wide gap semiconductors, including GaN and SiC, are revolutionizing numerous areas, from lighting, energy conversion, photovoltaics, and communications to biotechnology, imaging, and medicine. With an emphasis on engineering a

Book Zinc Oxide Nanostructures  Synthesis and Characterization

Download or read book Zinc Oxide Nanostructures Synthesis and Characterization written by Sotirios Baskoutas and published by MDPI. This book was released on 2018-12-04 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Zinc Oxide Nanostructures: Synthesis and Characterization" that was published in Materials

Book Characterization of Aluminum Doped Zinc Oxide Thin Films for Photovoltaic Applications

Download or read book Characterization of Aluminum Doped Zinc Oxide Thin Films for Photovoltaic Applications written by Bojanna P. Shantheyanda and published by . This book was released on 2010 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: Growing demand for clean source of energy in the recent years has increased the manufacture of solar cells for converting sun energy directly into electricity. Research has been carried out around the world to make a cheaper and more efficient solar cell technology by employing new architectural designs and developing new materials to serve as light absorbers and charge carriers. Aluminum doped Zinc Oxide thin film, a Transparent conductive Oxides (TCO) is used as a window material in the solar cell these days. Its increased stability in the reduced ambient, less expensive and more abundance make it popular among the other TCO's. It is the aim of this work to obtain a significantly low resistive ZnO:Al thin film with good transparency. Detailed electrical and materials studies is carried out on the film in order to expand knowledge and understanding. RF magnetron sputtering has been carried out at various substrate temperatures using argon, oxygen and hydrogen gases with various ratios to deposit this polycrystalline films on thermally grown SiO2 and glass wafer. The composition of the films has been determined by X-ray Photoelectron Spectroscopy and the identification of phases present have been made using X-ray diffraction experiment. Surface imaging of the film and roughness calculations are carried out using Scanning Electron Microscopy and Atomic Force Microscopy respectively. Determination of resistivity using 4-Probe technique and transparency using UV spectrophotometer were carried out as a part of electrical and optical characterization on the obtained thin film. The deposited thin films were later annealed in vacuum at various high temperatures and the change in material and electrical properties were analyzed.

Book Recent Applications in Sol Gel Synthesis

Download or read book Recent Applications in Sol Gel Synthesis written by Usha Chandra and published by BoD – Books on Demand. This book was released on 2017-07-05 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Versatility, extended compositional ranges, better homogeneity, lesser energy consumption, and requirement of nonexpensive equipments have boosted the use of sol-gel process on top of the popularity in the synthesis of nanosystems. The sol-gel technique has not only revolutionized oxide ceramics industry and/or material science but has also extended widely into multidimensional applications. The book Recent Applications in Sol-Gel Synthesis comprises 14 chapters that deal mainly with the application-oriented aspects of the technique. Sol-gel prepared metal oxide (MO) nanostructures like nanospheres, nanorods, nanoflakes, nanotubes, and nanoribbons have been employed in biomedical applications involving drug deliveries, mimicking of natural bone, and antimicrobial activities. The possibility of controlling grain size in aerogel and preparation of ultrahigh-temperature ceramic (UHTC)-based materials, fluorescent glasses, ultraviolet photosensors, and photocatalysts have been discussed in detail by the experts in the field. The usefulness of sol-gel materials as active GRIN, as textile finisher, and as leather modifier with water-repellent and oil-resistive properties would be an incentive for researchers keen to pursue the field.

Book Characterization of Aluminum Doped Zinc Oxide Thin Films Fabricated by Using Rectangular Filtered Vacuum Arc Deposition on Large Flat Area Glass Substates

Download or read book Characterization of Aluminum Doped Zinc Oxide Thin Films Fabricated by Using Rectangular Filtered Vacuum Arc Deposition on Large Flat Area Glass Substates written by Moran Press-Yekymov and published by . This book was released on 2013 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Processes in Semiconductors

Download or read book Optical Processes in Semiconductors written by Jacques I. Pankove and published by Courier Corporation. This book was released on 2012-12-19 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive text and reference covers all phenomena involving light in semiconductors, emphasizing modern applications in semiconductor lasers, electroluminescence, photodetectors, photoconductors, photoemitters, polarization effects, absorption spectroscopy, more. Numerous problems. 339 illustrations.

Book Emerging Trends in Computing and Expert Technology

Download or read book Emerging Trends in Computing and Expert Technology written by D. Jude Hemanth and published by Springer Nature. This book was released on 2019-11-07 with total page 1642 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents high-quality research papers that demonstrate how emerging technologies in the field of intelligent systems can be used to effectively meet global needs. The respective papers highlight a wealth of innovations and experimental results, while also addressing proven IT governance, standards and practices, and new designs and tools that facilitate rapid information flows to the user. The book is divided into five major sections, namely: “Advances in High Performance Computing”, “Advances in Machine and Deep Learning”, “Advances in Networking and Communication”, “Advances in Circuits and Systems in Computing” and “Advances in Control and Soft Computing”.