EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Process Analysis and Optimization of Biodiesel Production from Vegetable Oils

Download or read book Process Analysis and Optimization of Biodiesel Production from Vegetable Oils written by Lay L. Myint and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The dwindling resources of fossil fuels coupled with the steady increase in energy consumption have spurred research interest in alternative and renewable energy sources. Biodiesel is one of the most promising alternatives for fossil fuels. It can be made from various renewable sources, including recycled oil, and can be utilized in lieu of petroleum-based diesel. To foster market competitiveness for biodiesel, it is necessary to develop cost-effective and technically sound processing schemes, to identify related key design criteria, and optimize performance. The overall goal of this work was to design and optimize biodiesel (Fatty Acid Methyl Ester "FAME") production from vegetable oil. To achieve this goal, several interconnected research activities were undertaken. First, a base-case flow sheet was developed for the process. The performance of this flow sheet along with the key design and operating criteria were identified by conducting computer-aided simulation using ASPEN Plus. Various scenarios were simulated to provide sufficient understanding and insights. Also, different thermodynamic databases were used for different sections of the process to account for the various characteristics of the streams throughout the process. Next, mass and energy integration studies were performed to reduce the consumption of material and energy utilities, improve environmental impact, and enhance profitability. Finally, capital cost estimation was carried out using the ICARUS Process Evaluator computer-aided tools linked to the results of the ASPEN simulation. The operating cost of the process was estimated using the key information on process operation such as raw materials, utilities, and labor. A profitability analysis was carried out by examining the ROI (Return of Investment) and PP (Payback Period). It was determined that the single most important economic factor is the cost of soybean oil, which accounted for more than 90% of the total annualized cost. Consequently, a sensitivity analysis was performed to examine the effect of soybean oil cost on profitability. It was determined that both ROI and PP quickly deteriorate as the cost of soybean oil increases.

Book Analysis and Optimization of a biodiesel production from WCO

Download or read book Analysis and Optimization of a biodiesel production from WCO written by Roland Kalonji and published by GRIN Verlag. This book was released on 2018-01-17 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: Project Report from the year 2017 in the subject Engineering - Industrial Engineering and Management, , language: English, abstract: The conventional approach of biodiesel production is transesterification, using oil and alcohol in the presence of a catalyst with glycerol as a by-product of the reaction. Product quality is dependent on the type and amount of catalyst, type of oil feedstock, alcohol-to-oil ratio, etc. In terms of the best process, currently the alkali catalyzed process is the most profitable while the enzymatic based one is even more promising due to the lower consumption of energy and water; however it requires that the enzyme cost is reduced. The reason that biodiesel is not utilized widely around the world is due to the high cost of raw materials. To overcome this, one can use lower quality oils, such as Waste Cooking Oil (WCO). A lot of research has been carried out on the production of biodiesel from fresh vegetable and animal oil sources but the use of Waste Cooking Oil, such as palm oil, etc. has not been well documented. Then the aim of this current project is to analyze and optimize the conditions for biodiesel production from Waste Cooking Oil, by investigating interaction effects among process variables (temperature, oil-to-methanol molar ratio and catalyst loading) using SPC and other tools. Thus this project focuses on making biodiesel processes better and more efficient.

Book Optimization of Biodiesel and Biofuel Process

Download or read book Optimization of Biodiesel and Biofuel Process written by Diego Luna and published by MDPI. This book was released on 2021-09-02 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the compression ignition (C.I.) engine, invented by Rudolf Diesel, was originally intended to work with pure vegetable oils as fuel, more than a century ago, it was adapted to be used with a fuel of fossil origin, obtained from oil. Therefore, there would be no technical difficulties in returning to the primitive design of using biofuels of renewable origin, such as vegetable oils. The main drawback is found in the one billion C.I. engines which are currently in use, which would have to undergo a modification in the injection system in order to adapt them to the higher viscosity of vegetable oils in comparison to that of fossil fuels. Thus, the gradual incorporation of biofuels as substitutes of fossil fuels is mandatory.

Book Process Systems Engineering for Biofuels Development

Download or read book Process Systems Engineering for Biofuels Development written by Adrian Bonilla-Petriciolet and published by John Wiley & Sons. This book was released on 2020-10-05 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of current developments and applications in biofuels production Process Systems Engineering for Biofuels Development brings together the latest and most cutting-edge research on the production of biofuels. As the first book specifically devoted to process systems engineering for the production of biofuels, Process Systems Engineering for Biofuels Development covers theoretical, computational and experimental issues in biofuels process engineering. Written for researchers and postgraduate students working on biomass conversion and sustainable process design, as well as industrial practitioners and engineers involved in process design, modeling and optimization, this book is an indispensable guide to the newest developments in areas including: Enzyme-catalyzed biodiesel production Process analysis of biodiesel production (including kinetic modeling, simulation and optimization) The use of ultrasonification in biodiesel production Thermochemical processes for biomass transformation to biofuels Production of alternative biofuels In addition to the comprehensive overview of the subject of biofuels found in the Introduction of the book, the authors of various chapters have provided extensive discussions of the production and separation of biofuels via novel applications and techniques.

Book 23 European Symposium on Computer Aided Process Engineering

Download or read book 23 European Symposium on Computer Aided Process Engineering written by Martin F. Luna and published by Elsevier Inc. Chapters. This book was released on 2013-06-10 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: A significant source of uncertainty in biodiesel production is the variability of feed composition since the percentage and type of triglycerides varies considerably across different raw materials. Also, due to the complexity of both transesterification and saponification kinetics, first-principles models of biodiesel production typically have built-in errors (structural and parametric uncertainty) which give rise to the need for obtaining relevant data through experimental design in modeling for optimization. A run-to-run optimization strategy which integrates tendency models with Bayesian active learning is proposed. Parameter distributions in a probabilistic model of process performance are re-estimated using data from experiments designed for maximizing information and performance. Results obtained highlight that Bayesian optimal design of experiments using a probabilistic tendency model is effective in achieving the maximum ester content and yield in biodiesel production even though significant uncertainty in feed composition and modeling errors are present.

Book Pinch Analysis and Process Integration

Download or read book Pinch Analysis and Process Integration written by Ian C. Kemp and published by Elsevier. This book was released on 2011-04-01 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pinch analysis and related techniques are the key to design of inherently energy-efficient plants. This book shows engineers how to understand and optimize energy use in their processes, whether large or small. Energy savings go straight to the bottom line as increased profit, as well as reducing emissions. This is the key guide to process integration for both experienced and newly qualified engineers, as well as academics and students. It begins with an introduction to the main concepts of pinch analysis, the calculation of energy targets for a given process, the pinch temperature and the golden rules of pinch-based design to meet energy targets. The book shows how to extract the stream data necessary for a pinch analysis and describes the targeting process in depth. Other essential details include the design of heat exchanger networks, hot and cold utility systems, CHP (combined heat and power), refrigeration and optimization of system operating conditions. Many tips and techniques for practical application are covered, supported by several detailed case studies and other examples covering a wide range of industries, including buildings and other non-process situations. The only dedicated pinch analysis and process integration guide, fully revised and expanded supported by free downloadable energy targeting software The perfect guide and reference for chemical process, food and biochemical engineers, plant engineers and professionals concerned with energy optimisation, including building designers Covers the practical analysis of both new and existing systems, with ful details of industrial applications and case studies

Book Biodiesel

Download or read book Biodiesel written by Meisam Tabatabaei and published by Springer. This book was released on 2018-11-02 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents in-depth information on the state of the art of global biodiesel production and investigates its impact on climate change. Subsequently, it comprehensively discusses biodiesel production in terms of production systems (reactor technologies) as well as biodiesel purification and upgrading technologies. Moreover, the book reviews essential parameters in biodiesel production systems as well as major principles of operation, process control, and trouble-shooting in these systems. Conventional and emerging applications of biodiesel by-products with a view to further economize biodiesel production are also scrutinized. Separate chapters are dedicated to economic risk analysis and critical comparison of biodiesel production systems as well as techno-economical aspects of biodiesel plants. The book also thoroughly investigates the important aspects of biodiesel production and combustion by taking advantage of advanced sustainability analysis tools including life cycle assessment (LCA) and exergy techniques. In closing, the application of Omics technologies in biodiesel production is presented and discussed. This book is relevant to anyone with an interest in renewable, more sustainable fuel and energy solutions.

Book Feedstocks for Sustainable Biodiesel Production

Download or read book Feedstocks for Sustainable Biodiesel Production written by Chinwe P. Okonkwo and published by John Wiley & Sons. This book was released on 2024-08-28 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complete and practical guidance on using biodegradable feedstocks for biodiesel production Feedstocks for Sustainable Biodiesel Production: Characterization, Selection, and Optimization helps readers understand the advantages, challenges, and potential of different biodegradable feedstock options that can be used in biodiesel production, covering methods of feedstock sourcing extraction, environmental concerns, cost-benefit aspects, practical applications, and more. Specific biodegradable feedstocks covered in this text include chrysobalamus icaco, cussonia bateri, elaeis guineensis, waste cooking oils, moringa oleifera, jatropha curcas, chlorophyceae (unicellular green algae), fucus vesiculosus (micro algae), afzelia africana, cucurbita pepo, hura crepitans, cuyperus esculentus, colocynthus vulgaris, and others. This book explores topics such as: Key characteristics of biodiesel, using biodiesel as an alternative to petroleum diesel, and a review of the latest industry standards, practices, and trends Basis of the selection of specific (including nonedible) feedstocks for different applications and the addition of new, innovative feedstocks in recent years Specific sustainability benefits of nonedible feedstocks, which can be grown on abandoned land where they do not compete with food crops Government policies aimed at finding fossil fuel alternatives which will increase biodegradable feedstock adoption Experimental and predictive modeling of biodiesel produced from novel feedstocks using computational intelligence techniques Providing both core foundational knowledge on the subject as well as insight on how to practically transition away from fossil fuels, this book is an essential reference for engineering professionals with a specific interest in biodiesel production, sustainability, renewable energy, and environmental conservation.

Book Biodiesel Technology and Applications

Download or read book Biodiesel Technology and Applications written by Inamuddin and published by John Wiley & Sons. This book was released on 2021-06-16 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: BIODIESEL This outstanding new volume provides a comprehensive overview on biodiesel technologies, covering a broad range of topics and practical applications, edited by one of the most well-respected and prolific engineers in the world and his team. Energy technologies have attracted great attention due to the fast development of sustainable energy. Biodiesel technologies have been identified as the sustainable route through which overdependence on fossil fuels can be reduced. Biodiesel has played a key role in handling the growing challenge of a global climate change policy. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is a cost-effective, renewable, and sustainable fuel that can be made from vegetable oils and animal fats. Compared to petroleum-based diesel, biodiesel would offer a non-toxicity, biodegradability, improved air quality and positive impact on the environment, energy security, safe-to-handle, store and transport and so on. Biodiesels have been used as a replacement of petroleum diesel in transport vehicles, heavy-duty trucks, locomotives, heat oils, hydrogen production, electricity generators, agriculture, mining, construction, and forestry equipment. This book describes a comprehensive overview, covering a broad range of topics on biodiesel technologies and allied applications. Chapters cover history, properties, resources, fabrication methods, parameters, formulations, reactors, catalysis, transformations, analysis, in situ spectroscopies, key issues and applications of biodiesel technology. It also includes biodiesel methods, extraction strategies, biowaste utilization, oleochemical resources, non-edible feedstocks, heterogeneous catalysts, patents, and case-studies. Progress, challenges, future directions, and state-of-the-art biodiesel commercial technologies are discussed in detail. This book is an invaluable resource guide for professionals, faculty, students, chemical engineers, biotechnologists, and environmentalists in these research and development areas. This outstanding new volume: Summarizes the recent developments in this rapidly-developing, multi-disciplinary field Provides the reader with a practical understanding of biodiesel technology toward the real-world applications Formulates concepts, case-studies, patents, and applications helpful in decision making and problem-solving, in a single resource Delivers state-of-the-art information on biodiesel technology Audience: Chemical and process engineers and other professionals, faculty, students, scientists, biotechnologists, and environmental engineers

Book Production of Biodiesel from Non Edible Sources

Download or read book Production of Biodiesel from Non Edible Sources written by A. Arumugam and published by Elsevier. This book was released on 2022-02-10 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Production of Biodiesel from Non-Edible Sources: Technological Updates offers a step-by-step guide to the production of biodiesel, providing comparisons of existing methods, new and state-of-the-art technologies, and real-world examples of implementation. The book discusses all potential non-edible feedstocks for biodiesel production, providing their properties, availability, and processing, including deeper insights into kinetic models and simulation of biodiesel fermentation. Readers will gain knowledge of existing parameters and methods for biodiesel production, optimization, scale-up, and sustainability, along with guidance on the practical implementation of these methods and techniques. Finally, environmental sustainability, techno-economic analysis, and policymaking aspects are considered and put into the context of future prospects. This book offers a step-by-step guide for researchers and industry practitioners involved in bioenergy, renewable energy, biofuels production and bioconversion processes. Provides step-by-step guidance on key processes and procedures Reviews all the available non-edible feedstocks for biodiesel production and presents their properties, pros and cons Presents pilot and industry-scale case studies on the implementation of biodiesel production from non-edible feedstocks Addresses optimization, environmental sustainability, economic viability and policy issues to support commercialization

Book Toward Sustainable Process Development for Biodiesel Production

Download or read book Toward Sustainable Process Development for Biodiesel Production written by Edith Martinez-Guerra and published by . This book was released on 2016 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resource-efficient technologies are essential for economically viable biodiesel production. This work focuses on conversion of microalgal lipids and vegetable oils into fatty acid alkyl esters or biodiesel. Transesterification of waste cooking oil (WCO) and extractive-transesterification of wet microalgal biomass were investigated using microwave and ultrasound irradiations through several process parametric evaluation studies to elucidate the effects of different alcohols and catalyst types (homogeneous and heterogeneous), reaction time, and reaction temperatures. First, a brief overview of process steps involved in microalgal biodiesel production and associated energy consumption and research needs were discussed. Next, energy analysis of microalgal biocrude production via extractive-transesterification under microwave and ultrasound irradiations (individually) was performed. Then, the synergistic effect of microwave and ultrasound irradiations on extractivetransesterification of microalgal lipids was evaluated through a process optimization study using response surface methodology to determine the best process conditions. For this study, a maximum biocrude conversion of 51.2% was obtained when 20 g of algal paste was treated with 30 mL methanol, 1 wt.% catalyst, 7 min reaction time, and 140 W for MW and US (280 W total). Further, biocrude yield kinetics study revealed that the activation energy for this reaction was around 17, 298 J mol-1 K-1. A series of experimental studies were conducted to understand the roles and effects of various process related conditions including the power output and power density of microwave and ultrasound irradiations in biodiesel production. The two nonconventional heating techniques were compared for their process intensification effects. Ultrasound was applied either in continuous or pulse mode. Pulse sonication was found to be more suitable for simple transesterification reaction of WCO with a 98% biodiesel yield in 2.5 min (9:1 methanol to oil ratio, 1.25% catalyst, and 150 W power output) over 82% yield for continuous sonication under the same conditions. Followed by this, a detailed study was conducted to determine optimum pulse (ON and OFF time) sonication conditions. A 99% conversion yield was obtained for a pulse ON-OFF combination of 7s- 2s. Additionally, the effect of different alcohols (ethanol, methanol, and ethanol-methanol mixtures) using pulse sonication was evaluated.

Book Optimization of Biodiesel and Biofuel Process

Download or read book Optimization of Biodiesel and Biofuel Process written by Diego Luna and published by . This book was released on 2021 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the compression ignition (C.I.) engine, invented by Rudolf Diesel, was originally intended to work with pure vegetable oils as fuel, more than a century ago, it was adapted to be used with a fuel of fossil origin, obtained from oil. Therefore, there would be no technical difficulties in returning to the primitive design of using biofuels of renewable origin, such as vegetable oils. The main drawback is found in the one billion C.I. engines which are currently in use, which would have to undergo a modification in the injection system in order to adapt them to the higher viscosity of vegetable oils in comparison to that of fossil fuels. Thus, the gradual incorporation of biofuels as substitutes of fossil fuels is mandatory.

Book Nano  and Biocatalysts for Biodiesel Production

Download or read book Nano and Biocatalysts for Biodiesel Production written by Avinash P. Ingle and published by John Wiley & Sons. This book was released on 2021-06-21 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews recent advances in catalytic biodiesel synthesis, highlighting various nanocatalysts and nano(bio)catalysts developed for effective biodiesel production Nano- and Biocatalysts for Biodiesel Production delivers an essential reference for academic and industrial researchers in biomass valorization and biofuel industries. The book covers both nanocatalysts and biocatalysts, bridging the gap between homogenous and heterogenous catalysis. Readers will learn about the techno-economical and environmental aspects of biodiesel production using different feedstocks and catalysts. They will also discover how nano(bio)catalysts can be used as effective alternatives to conventional catalysts in biodiesel production due to their unique properties, including reusability, high activation energy and rate of reaction, easy recovery, and recyclability. Readers will benefit from the inclusion of: Introductions to CaO nanocatalysts, zeolite nanocatalysts, titanium dioxide-based nanocatalysts and zinc-based in biodiesel production An exploration of carbon-based heterogeneous nanocatalysts for the production of biodiesel Practical discussions of bio-based nano catalysts for biodiesel production and the application of nanoporous materials as heterogeneous catalysts for biodiesel production An analysis of the techno-economical considerations of biodiesel production using different feedstocks Nano- and Biocatalysts for Biodiesel Production focuses on recent advances in the field and offers a complete and informative guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, catalysis, biotechnology, bioengineering, nanotechnology, and materials science.

Book Biodiesel Production

    Book Details:
  • Author : Biodiesel Production Technologies Challenges and Future Prospects Task Committee
  • Publisher :
  • Release : 2019
  • ISBN : 9780784415344
  • Pages : 848 pages

Download or read book Biodiesel Production written by Biodiesel Production Technologies Challenges and Future Prospects Task Committee and published by . This book was released on 2019 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biodiesel Production: Technologies, Challenges, and Future Prospects provides in-depth information on fundamentals, approaches, technologies, source materials and associated socio-economic and political impacts of biodiesel production.

Book Assessment of the potential of methyl ester production from non edible oils

Download or read book Assessment of the potential of methyl ester production from non edible oils written by Venu Gopal and published by GRIN Verlag. This book was released on 2018-09-12 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doctoral Thesis / Dissertation from the year 2017 in the subject Environmental Sciences, grade: A, Andhra University (College of engineering), language: English, abstract: Biodiesel as an alternative fuel for diesel engines is becoming increasingly important due to diminishing petroleum reserves and the environmental consequences of exhaust gases from petroleum-fueled engines. Biodiesel, which is made from renewable sources, consists of the simple alkyl esters of fatty acids. As a future prospective fuel, biodiesel has to compete economically with petroleum diesel fuels. A two-step transesterification process (Sequential esterification and transesterification process) was used to prepare methyl ester (biodiesel) from high free fatty acid (FFA) content oils. For the yield of high FFA, two-step acid-base catalyzed method has been developed which consists of acid-catalyzed pretreatment/esterification step to reduce the FFA to less than 1% using H2SO4 as an acid catalyst and transesterification of pretreated oil to biodiesel using alkali catalyst. In the present study, the main focus is being placed to explore the non-edible oil resources like Used Cooking Oil (UCO), Cottonseed oil, Jatropha (Jatropha curcas) oil, Neem(Azadirachta indica) oil as a potential source for biodiesel. Experimental results from enzyme (lipase) catalyzed method for selected oils using influencing parameters such as reaction time and catalyst weight, experimental results from acid-alkaline catalyzed methods using common influencing parameters such as methanol to oil molar ratio, catalyst weight, reaction temperature and reaction time for above-mentioned oils were compared using batch mode. Methyl ester (biodiesel) yield range of 66.20-71.6% was attained for an enzyme-catalyzed method, whereas for acid-alkaline the yield range was 84.4-91.6%. This gives the indication of further refinement in the enzyme-catalyzed transesterification process. However, enzyme-catalyzed biodiesel production has some limitations especially when implemented in industrial scale because of the high cost of enzyme, low reaction rate and enzyme deactivation. As the catalyst, an enzyme is restricted to rigorous reaction condition and the activity loss of lipase. The influencing parameters and absolute results of the analysis give the impression of the superiority of acid-alkaline transesterification method for methyl ester production. In this study, we have selected Used Cooking Oil Methyl Ester (UCOME) and Jatropha Methyl Ester (JME) among the methyl esters of four oils.

Book The Biodiesel Handbook

    Book Details:
  • Author : Gerhard Knothe
  • Publisher : Elsevier
  • Release : 2015-08-13
  • ISBN : 0983507260
  • Pages : 516 pages

Download or read book The Biodiesel Handbook written by Gerhard Knothe and published by Elsevier. This book was released on 2015-08-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this invaluable handbook covers converting vegetable oils, animal fats, and used oils into biodiesel fuel. The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental impacts, as well as the status of the biodiesel industry worldwide. Incorporates the major research and other developments in the world of biodiesel in a comprehensive and practical format Includes reference materials and tables on biodiesel standards, unit conversions, and technical details in four appendices Presents details on other uses of biodiesel and other alternative diesel fuels from oils and fats

Book Biofuels

    Book Details:
  • Author : Krzysztof Biernat
  • Publisher : BoD – Books on Demand
  • Release : 2018-07-11
  • ISBN : 1789233461
  • Pages : 302 pages

Download or read book Biofuels written by Krzysztof Biernat and published by BoD – Books on Demand. This book was released on 2018-07-11 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers the current state of knowledge in the field of biofuels, presented by selected research centers from around the world. Biogas from waste production process and areas of application of biomethane were characterized. Also, possibilities of applications of wastes from fruit bunch of oil palm tree and high biomass/bagasse from sorghum and Bermuda grass for second-generation bioethanol were presented. Processes and mechanisms of biodiesel production, including the review of catalytic transesterification process, and careful analysis of kinetics, including bioreactor system for algae breeding, were widely analyzed. Problem of emissivity of NOx from engines fueled by B20 fuel was characterized. The closing chapters deal with the assessment of the potential of biofuels in Turkey, the components of refinery systems for production of biodegradable plastics from biomass. Also, a chapter concerning the environmental conditions of synthesis gas production as a universal raw material for the production of alternative fuels was also added.