EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Probability Measures on Locally Compact Groups

Download or read book Probability Measures on Locally Compact Groups written by H. Heyer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems.

Book Probability and Measure

    Book Details:
  • Author : Patrick Billingsley
  • Publisher : John Wiley & Sons
  • Release : 2017
  • ISBN : 9788126517718
  • Pages : 612 pages

Download or read book Probability and Measure written by Patrick Billingsley and published by John Wiley & Sons. This book was released on 2017 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes

Book Random Probability Measures on Polish Spaces

Download or read book Random Probability Measures on Polish Spaces written by Hans Crauel and published by CRC Press. This book was released on 2002-07-25 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph the narrow topology on random probability measures on Polish spaces is investigated in a thorough and comprehensive way. As a special feature, no additional assumptions on the probability space in the background, such as completeness or a countable generated algebra, are made. One of the main results is a direct proof of the rando

Book Probability Measures on Metric Spaces

Download or read book Probability Measures on Metric Spaces written by K. R. Parthasarathy and published by Academic Press. This book was released on 2014-07-03 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability Measures on Metric Spaces presents the general theory of probability measures in abstract metric spaces. This book deals with complete separable metric groups, locally impact abelian groups, Hilbert spaces, and the spaces of continuous functions. Organized into seven chapters, this book begins with an overview of isomorphism theorem, which states that two Borel subsets of complete separable metric spaces are isomorphic if and only if they have the same cardinality. This text then deals with properties such as tightness, regularity, and perfectness of measures defined on metric spaces. Other chapters consider the arithmetic of probability distributions in topological groups. This book discusses as well the proofs of the classical extension theorems and existence of conditional and regular conditional probabilities in standard Borel spaces. The final chapter deals with the compactness criteria for sets of probability measures and their applications to testing statistical hypotheses. This book is a valuable resource for statisticians.

Book Measure  Integration   Real Analysis

Download or read book Measure Integration Real Analysis written by Sheldon Axler and published by Springer Nature. This book was released on 2019-11-29 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/

Book An Introduction to Measure and Probability

Download or read book An Introduction to Measure and Probability written by J.C. Taylor and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming only calculus and linear algebra, Professor Taylor introduces readers to measure theory and probability, discrete martingales, and weak convergence. This is a technically complete, self-contained and rigorous approach that helps the reader to develop basic skills in analysis and probability. Students of pure mathematics and statistics can thus expect to acquire a sound introduction to basic measure theory and probability, while readers with a background in finance, business, or engineering will gain a technical understanding of discrete martingales in the equivalent of one semester. J. C. Taylor is the author of numerous articles on potential theory, both probabilistic and analytic, and is particularly interested in the potential theory of symmetric spaces.

Book Integration  Measure and Probability

Download or read book Integration Measure and Probability written by H. R. Pitt and published by Courier Corporation. This book was released on 2012-01-01 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory treatment develops the theory of integration in a general context, making it applicable to other branches of analysis. More specialized topics include convergence theorems and random sequences and functions. 1963 edition.

Book Contiguity of Probability Measures

Download or read book Contiguity of Probability Measures written by George G. Roussas and published by Cambridge University Press. This book was released on 1972-10-05 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Tract presents an elaboration of the notion of 'contiguity', which is a concept of 'nearness' of sequences of probability measures. It provides a powerful mathematical tool for establishing certain theoretical results with applications in statistics, particularly in large sample theory problems, where it simplifies derivations and points the way to important results. The potential of this concept has so far only been touched upon in the existing literature, and this book provides the first systematic discussion of it. Alternative characterizations of contiguity are first described and related to more familiar mathematical ideas of a similar nature. A number of general theorems are formulated and proved. These results, which provide the means of obtaining asymptotic expansions and distributions of likelihood functions, are essential to the applications which follow.

Book A User s Guide to Measure Theoretic Probability

Download or read book A User s Guide to Measure Theoretic Probability written by David Pollard and published by Cambridge University Press. This book was released on 2002 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.

Book Introduction to Probability and Measure

Download or read book Introduction to Probability and Measure written by K.R. Parthasarathy and published by Springer. This book was released on 2005-05-15 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to a remark attributed to Mark Kac 'Probability Theory is a measure theory with a soul'. This book with its choice of proofs, remarks, examples and exercises has been prepared taking both these aesthetic and practical aspects into account.

Book Weak Convergence of Measures

Download or read book Weak Convergence of Measures written by Patrick Billingsley and published by SIAM. This book was released on 1971-01-01 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt: A treatment of the convergence of probability measures from the foundations to applications in limit theory for dependent random variables. Mapping theorems are proved via Skorokhod's representation theorem; Prokhorov's theorem is proved by construction of a content. The limit theorems at the conclusion are proved under a new set of conditions that apply fairly broadly, but at the same time make possible relatively simple proofs.

Book Measurement and Probability

Download or read book Measurement and Probability written by Giovanni Battista Rossi and published by Springer. This book was released on 2014-05-19 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measurement plays a fundamental role both in physical and behavioral sciences, as well as in engineering and technology: it is the link between abstract models and empirical reality and is a privileged method of gathering information from the real world. Is it possible to develop a single theory of measurement for the various domains of science and technology in which measurement is involved? This book takes the challenge by addressing the following main issues: What is the meaning of measurement? How do we measure? What can be measured? A theoretical framework that could truly be shared by scientists in different fields, ranging from physics and engineering to psychology is developed. The future in fact will require greater collaboration between science and technology and between different sciences. Measurement, which played a key role in the birth of modern science, can act as an essential interdisciplinary tool and language for this new scenario. A sound theoretical basis for addressing key problems in measurement is provided. These include perceptual measurement, the evaluation of uncertainty, the evaluation of inter-comparisons, the analysis of risks in decision-making and the characterization of dynamical measurement. Currently, increasing attention is paid to these issues due to their scientific, technical, economic and social impact. The book proposes a unified probabilistic approach to them which may allow more rational and effective solutions to be reached. Great care was taken to make the text as accessible as possible in several ways. Firstly, by giving preference to as interdisciplinary a terminology as possible; secondly, by carefully defining and discussing all key terms. This ensures that a wide readership, including people from different mathematical backgrounds and different understandings of measurement can all benefit from this work. Concerning mathematics, all the main results are preceded by intuitive discussions and illustrated by simple examples. Moreover, precise proofs are always included in order to enable the more demanding readers to make conscious and creative use of these ideas, and also to develop new ones. The book demonstrates that measurement, which is commonly understood to be a merely experimental matter, poses theoretical questions which are no less challenging than those arising in other, apparently more theoretical, disciplines.

Book Unimodality of Probability Measures

Download or read book Unimodality of Probability Measures written by Emile M.J. Bertin and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The central theme of this monograph is Khinchin-type representation theorems. An abstract framework for unimodality, an example of applied functional analysis, is developed for the introduction of different types of unimodality and the study of their behaviour. Also, several useful consequences or ramifications tied to these notions are provided. Being neither an encyclopaedia, nor a historical overview, this book aims to serve as an understanding of the basic features of unimodality. Chapter 1 lays a foundation for the mathematical reasoning in the chapters following. Chapter 2 deals with the concept of Khinchin space, which leads to the introduction of beta-unimodality in Chapter 3. A discussion on several existing multivariate notions of unimodality concludes this chapter. Chapter 4 concerns Khinchin's classical unimodality, and Chapter 5 is devoted to discrete unimodality. Chapters 6 and 7 treat the concept of strong unimodality on R and to Ibragimov-type results characterising the probability measures which preserve unimodality by convolution, and the concept of slantedness, respectively. Most chapters end with comments, referring to historical aspects or supplying complementary information and open questions. A practical bibliography, as well as symbol, name and subject indices ensure efficient use of this volume. Audience: Both researchers and applied mathematicians in the field of unimodality will value this monograph, and it may be used in graduate courses or seminars on this subject too.

Book Convergence of Probability Measures

Download or read book Convergence of Probability Measures written by Patrick Billingsley and published by John Wiley & Sons. This book was released on 2013-06-25 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new look at weak-convergence methods in metric spaces-from a master of probability theory In this new edition, Patrick Billingsley updates his classic work Convergence of Probability Measures to reflect developments of the past thirty years. Widely known for his straightforward approach and reader-friendly style, Dr. Billingsley presents a clear, precise, up-to-date account of probability limit theory in metric spaces. He incorporates many examples and applications that illustrate the power and utility of this theory in a range of disciplines-from analysis and number theory to statistics, engineering, economics, and population biology. With an emphasis on the simplicity of the mathematics and smooth transitions between topics, the Second Edition boasts major revisions of the sections on dependent random variables as well as new sections on relative measure, on lacunary trigonometric series, and on the Poisson-Dirichlet distribution as a description of the long cycles in permutations and the large divisors of integers. Assuming only standard measure-theoretic probability and metric-space topology, Convergence of Probability Measures provides statisticians and mathematicians with basic tools of probability theory as well as a springboard to the "industrial-strength" literature available today.

Book Measure  Integral and Probability

Download or read book Measure Integral and Probability written by Marek Capinski and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: This very well written and accessible book emphasizes the reasons for studying measure theory, which is the foundation of much of probability. By focusing on measure, many illustrative examples and applications, including a thorough discussion of standard probability distributions and densities, are opened. The book also includes many problems and their fully worked solutions.

Book Probability Measures on Groups IX

Download or read book Probability Measures on Groups IX written by Herbert Heyer and published by Springer. This book was released on 2006-11-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest in this series of Oberwolfach conferences focussed on the interplay between structural probability theory and various other areas of pure and applied mathematics such as Tauberian theory, infinite-dimensional rotation groups, central limit theorems, harmonizable processes, and spherical data. Thus it was attended by mathematicians whose research interests range from number theory to quantum physics in conjunction with structural properties of probabilistic phenomena. This volume contains 5 survey articles submitted on special invitation and 25 original research papers.

Book Measure Theory and Probability Theory

Download or read book Measure Theory and Probability Theory written by Krishna B. Athreya and published by Springer Science & Business Media. This book was released on 2006-07-27 with total page 625 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.