EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Combinatorics and Probability

Download or read book Combinatorics and Probability written by Graham Brightwell and published by Cambridge University Press. This book was released on 2007-03-08 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume celebrating the 60th birthday of Béla Bollobás presents the state of the art in combinatorics.

Book Random Trees

    Book Details:
  • Author : Michael Drmota
  • Publisher : Springer Science & Business Media
  • Release : 2009-04-16
  • ISBN : 3211753575
  • Pages : 466 pages

Download or read book Random Trees written by Michael Drmota and published by Springer Science & Business Media. This book was released on 2009-04-16 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to provide a thorough introduction to various aspects of trees in random settings and a systematic treatment of the mathematical analysis techniques involved. It should serve as a reference book as well as a basis for future research.

Book Lectures on the Combinatorics of Free Probability

Download or read book Lectures on the Combinatorics of Free Probability written by Alexandru Nica and published by Cambridge University Press. This book was released on 2006-09-07 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2006 book is a self-contained introduction to free probability theory suitable for an introductory graduate level course.

Book Combinatorics

    Book Details:
  • Author : Béla Bollobás
  • Publisher : Cambridge University Press
  • Release : 1986-07-31
  • ISBN : 9780521337038
  • Pages : 196 pages

Download or read book Combinatorics written by Béla Bollobás and published by Cambridge University Press. This book was released on 1986-07-31 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorics is a book whose main theme is the study of subsets of a finite set. It gives a thorough grounding in the theories of set systems and hypergraphs, while providing an introduction to matroids, designs, combinatorial probability and Ramsey theory for infinite sets. The gems of the theory are emphasized: beautiful results with elegant proofs. The book developed from a course at Louisiana State University and combines a careful presentation with the informal style of those lectures. It should be an ideal text for senior undergraduates and beginning graduates.

Book Combinatorics  Geometry and Probability

Download or read book Combinatorics Geometry and Probability written by Béla Bollobás and published by Cambridge University Press. This book was released on 1997-05-22 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: A panorama of combinatorics by the world's experts.

Book Probability and Combinatorics

Download or read book Probability and Combinatorics written by D.P. Apte and published by Excel Books India. This book was released on 2007 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a selection of topics on combinatorics, probability and discrete mathematics useful to the students of MCA, MBA, computer science and applied mathematics. The book uses a different approach in explaining these subjects, so as to be equally suitable for the students with different backgrounds from commerce to computer engineering. This book not only explains the concepts and provides variety of solved problems, but also helps students to develop insight and perception, to formulate and solve mathematical problems in a creative way. The book includes topics in combinatorics like advance principles of counting, combinatorial identities, concept of probability, random variables and their probability distributions, discrete and continuous standard distributions and jointly random variables, recurrence relations and generating functions. This book completely covers MCA syllabus of Pune University and will also be suitable for undergraduate science courses like B.Sc. as well as management courses.

Book Problems from the Discrete to the Continuous

Download or read book Problems from the Discrete to the Continuous written by Ross G. Pinsky and published by Springer. This book was released on 2014-08-09 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary intent of the book is to introduce an array of beautiful problems in a variety of subjects quickly, pithily and completely rigorously to graduate students and advanced undergraduates. The book takes a number of specific problems and solves them, the needed tools developed along the way in the context of the particular problems. It treats a melange of topics from combinatorial probability theory, number theory, random graph theory and combinatorics. The problems in this book involve the asymptotic analysis of a discrete construct, as some natural parameter of the system tends to infinity. Besides bridging discrete mathematics and mathematical analysis, the book makes a modest attempt at bridging disciplines. The problems were selected with an eye toward accessibility to a wide audience, including advanced undergraduate students. The book could be used for a seminar course in which students present the lectures.

Book Introduction to Combinatorial Theory

Download or read book Introduction to Combinatorial Theory written by R. C. Bose and published by . This book was released on 1984-03-19 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: A ``hands-on'' constructive and computational approach to combinatorial topics with real-life modern applications. Provides a simple treatment of the subject. Introduces topics such as counting, designs and graphs. The notation is standard and kept to a minimum. Chapters end with historical remarks and suggestions for further reading.

Book Introduction to Counting and Probability

Download or read book Introduction to Counting and Probability written by David Patrick and published by . This book was released on 2007-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proofs that Really Count

    Book Details:
  • Author : Arthur T. Benjamin
  • Publisher : American Mathematical Society
  • Release : 2022-09-21
  • ISBN : 1470472597
  • Pages : 210 pages

Download or read book Proofs that Really Count written by Arthur T. Benjamin and published by American Mathematical Society. This book was released on 2022-09-21 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics is the science of patterns, and mathematicians attempt to understand these patterns and discover new ones using a variety of tools. In Proofs That Really Count, award-winning math professors Arthur Benjamin and Jennifer Quinn demonstrate that many number patterns, even very complex ones, can be understood by simple counting arguments. The book emphasizes numbers that are often not thought of as numbers that count: Fibonacci Numbers, Lucas Numbers, Continued Fractions, and Harmonic Numbers, to name a few. Numerous hints and references are given for all chapter exercises and many chapters end with a list of identities in need of combinatorial proof. The extensive appendix of identities will be a valuable resource. This book should appeal to readers of all levels, from high school math students to professional mathematicians.

Book Analytic Combinatorics

    Book Details:
  • Author : Philippe Flajolet
  • Publisher : Cambridge University Press
  • Release : 2009-01-15
  • ISBN : 1139477161
  • Pages : 825 pages

Download or read book Analytic Combinatorics written by Philippe Flajolet and published by Cambridge University Press. This book was released on 2009-01-15 with total page 825 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytic combinatorics aims to enable precise quantitative predictions of the properties of large combinatorial structures. The theory has emerged over recent decades as essential both for the analysis of algorithms and for the study of scientific models in many disciplines, including probability theory, statistical physics, computational biology, and information theory. With a careful combination of symbolic enumeration methods and complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that can be applied in particular to fundamental structures such as permutations, sequences, strings, walks, paths, trees, graphs and maps. This account is the definitive treatment of the topic. The authors give full coverage of the underlying mathematics and a thorough treatment of both classical and modern applications of the theory. The text is complemented with exercises, examples, appendices and notes to aid understanding. The book can be used for an advanced undergraduate or a graduate course, or for self-study.

Book 102 Combinatorial Problems

Download or read book 102 Combinatorial Problems written by Titu Andreescu and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: "102 Combinatorial Problems" consists of carefully selected problems that have been used in the training and testing of the USA International Mathematical Olympiad (IMO) team. Key features: * Provides in-depth enrichment in the important areas of combinatorics by reorganizing and enhancing problem-solving tactics and strategies * Topics include: combinatorial arguments and identities, generating functions, graph theory, recursive relations, sums and products, probability, number theory, polynomials, theory of equations, complex numbers in geometry, algorithmic proofs, combinatorial and advanced geometry, functional equations and classical inequalities The book is systematically organized, gradually building combinatorial skills and techniques and broadening the student's view of mathematics. Aside from its practical use in training teachers and students engaged in mathematical competitions, it is a source of enrichment that is bound to stimulate interest in a variety of mathematical areas that are tangential to combinatorics.

Book Introduction to Probability

Download or read book Introduction to Probability written by David F. Anderson and published by Cambridge University Press. This book was released on 2017-11-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.

Book Probability Theory and Combinatorial Optimization

Download or read book Probability Theory and Combinatorial Optimization written by J. Michael Steele and published by SIAM. This book was released on 1997-01-01 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an introduction to the state of the art of the probability theory that is most directly applicable to combinatorial optimization. The questions that receive the most attention are those that deal with discrete optimization problems for points in Euclidean space, such as the minimum spanning tree, the traveling-salesman tour, and minimal-length matchings. Still, there are several nongeometric optimization problems that receive full treatment, and these include the problems of the longest common subsequence and the longest increasing subsequence. The philosophy that guides the exposition is that analysis of concrete problems is the most effective way to explain even the most general methods or abstract principles. There are three fundamental probabilistic themes that are examined through our concrete investigations. First, there is a systematic exploitation of martingales. The second theme that is explored is the systematic use of subadditivity of several flavors, ranging from the naïve subadditivity of real sequences to the subtler subadditivity of stochastic processes. The third and deepest theme developed here concerns the application of Talagrand's isoperimetric theory of concentration inequalities.

Book Combinatorics

    Book Details:
  • Author : Peter Jephson Cameron
  • Publisher : Cambridge University Press
  • Release : 1994-10-06
  • ISBN : 9780521457613
  • Pages : 372 pages

Download or read book Combinatorics written by Peter Jephson Cameron and published by Cambridge University Press. This book was released on 1994-10-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorics is a subject of increasing importance because of its links with computer science, statistics, and algebra. This textbook stresses common techniques (such as generating functions and recursive construction) that underlie the great variety of subject matter, and the fact that a constructive or algorithmic proof is more valuable than an existence proof. The author emphasizes techniques as well as topics and includes many algorithms described in simple terms. The text should provide essential background for students in all parts of discrete mathematics.

Book The Probabilistic Method

Download or read book The Probabilistic Method written by Noga Alon and published by John Wiley & Sons. This book was released on 2015-11-02 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.

Book Problems in Probability

    Book Details:
  • Author : Albert N. Shiryaev
  • Publisher : Springer Science & Business Media
  • Release : 2012-08-07
  • ISBN : 1461436885
  • Pages : 432 pages

Download or read book Problems in Probability written by Albert N. Shiryaev and published by Springer Science & Business Media. This book was released on 2012-08-07 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first two editions of the book Probability (GTM 95), each chapter included a comprehensive and diverse set of relevant exercises. While the work on the third edition was still in progress, it was decided that it would be more appropriate to publish a separate book that would comprise all of the exercises from previous editions, in addition to many new exercises. Most of the material in this book consists of exercises created by Shiryaev, collected and compiled over the course of many years while working on many interesting topics. Many of the exercises resulted from discussions that took place during special seminars for graduate and undergraduate students. Many of the exercises included in the book contain helpful hints and other relevant information. Lastly, the author has included an appendix at the end of the book that contains a summary of the main results, notation and terminology from Probability Theory that are used throughout the present book. This Appendix also contains additional material from Combinatorics, Potential Theory and Markov Chains, which is not covered in the book, but is nevertheless needed for many of the exercises included here.