Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Seismic Hazards and Risk written by T. G. Sitharam and published by Springer Nature. This book was released on 2021-03-22 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents select papers presented at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The papers discuss advances in the fields of soil dynamics and geotechnical earthquake engineering. Some of the themes include seismic risk assessment, engineering seismology, wave propagation, remote sensing applications for geohazards,engineering vibrations, etc. A strong emphasis is placed on connecting academic research and field practice, with many examples, case studies, best practices, and discussions on performance based design. This volume will be of interest to researchers and practicing engineers alike.
Download or read book Soil Foundation Structure Interaction written by Rolando P. Orense and published by CRC Press. This book was released on 2010-07-20 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil-Foundation-Structure Interaction contains selected papers presented at the International Workshop on Soil-Foundation-Structure Interaction held in Auckland, New Zealand from 26-27 November 2009. The workshop was the venue for an international exchange of ideas, disseminating information about experiments, numerical models and practical en
Download or read book Stochastic Model for Earthquake Ground Motion Using Wavelet Packets written by Yoshifumi Yamamoto and published by Stanford University. This book was released on 2011 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: For performance-based design, nonlinear dynamic structural analysis for various types of input ground motions is required. Stochastic (simulated) ground motions are sometimes useful as input motions, because unlike recorded motions they are not limited in number and because their properties can be varied systematically to study the impact of ground motion properties on structural response. This dissertation describes an approach by which the wavelet packet transform can be used to characterize complex time-varying earthquake ground motions, and it illustrates the potential benefits of such an approach in a variety of earthquake engineering applications. The proposed model is based on Thr´ainsson and Kiremidjian (2002), which use Fourier amplitudes and phase differences to simulate ground motions and attenuation models to their model parameters. We extend their model using wavelet packet transform since it can control the time and frequency characteristic of time series. The time- and frequency-varying properties of real ground motions can be captured using wavelet packets, so a model is developed that requires only 13 parameters to describe a given ground motion. These 13 parameters are then related to seismological variables such as earthquake magnitude, distance, and site condition, through regression analysis that captures trends in mean values, standard deviations and correlations of these parameters observed in a large database of recorded strong ground motions. The resulting regression equations then form a model that can be used to predict ground motions for a future earthquake scenario; this model is analogous to widely used empirical ground motion prediction models (formerly called "attenuation models") except that this model predicts entire time series rather than only response spectra. The ground motions produced using this predictive model are explored in detail, and are shown to have elastic response spectra, inelastic response spectra, durations, mean periods, etc., that are consistent in both mean and variability to existing published predictive models for those properties. That consistency allows the proposed model to be used in place of existing models for probabilistic seismic hazard analysis (PSHA) calculations. This new way to calculate PSHA is termed "simulation-based probabilistic seismic hazard analysis" and it allows a deeper understanding of ground motion hazard and hazard deaggregation than is possible with traditional PSHA because it produces a suite of potential ground motion time histories rather than simply a distribution of response spectra. The potential benefits of this approach are demonstrated and explored in detail. Taking this analysis even further, this suite of time histories can be used as input for nonlinear dynamic analysis of structures, to perform a risk analysis (i.e., "probabilistic seismic demand analysis") that allows computation of the probability of the structure exceeding some level of response in a future earthquake. These risk calculations are often performed today using small sets of scaled recorded ground motions, but that approach requires a variety of assumptions regarding important properties of ground motions, the impacts of ground motion scaling, etc. The approach proposed here facilitates examination of those assumptions, and provides a variety of other relevant information not obtainable by that traditional approach.
Download or read book Rapid Visual Screening of Buildings for Potential Seismic Hazards Supporting Documentation written by and published by Government Printing Office. This book was released on 2015 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Rapid Visual Screening (RVS) handbook can be used by trained personnel to identify, inventory, and screen buildings that are potentially seismically vulnerable. The RVS procedure comprises a method and several forms that help users to quickly identify, inventory, and score buildings according to their risk of collapse if hit by major earthquakes. The RVS handbook describes how to identify the structural type and key weakness characteristics, how to complete the screening forms, and how to manage a successful RVS program.
Download or read book Probabilistic Seismic Demand Analysis of Nonlinear Structures written by Nilesh Shome and published by . This book was released on 1999 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Basic Earthquake Engineering written by Halûk Sucuoğlu and published by Springer. This book was released on 2014-05-09 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides senior undergraduate students, master students and structural engineers who do not have a background in the field with core knowledge of structural earthquake engineering that will be invaluable in their professional lives. The basics of seismotectonics, including the causes, magnitude, and intensity of earthquakes, are first explained. Then the book introduces basic elements of seismic hazard analysis and presents the concept of a seismic hazard map for use in seismic design. Subsequent chapters cover key aspects of the response analysis of simple systems and building structures to earthquake ground motions, design spectrum, the adoption of seismic analysis procedures in seismic design codes, seismic design principles and seismic design of reinforced concrete structures. Helpful worked examples on seismic analysis of linear, nonlinear and base isolated buildings, earthquake-resistant design of frame and frame-shear wall systems are included, most of which can be solved using a hand calculator.
Download or read book Performance Based Seismic Design of Concrete Structures and Infrastructures written by Plevris, Vagelis and published by IGI Global. This book was released on 2017-02-14 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Performance-Based Seismic Design of Concrete Structures and Infrastructures is an informative reference source on all the latest trends and emerging data associated with structural design. Highlighting key topics such as seismic assessments, shear wall structures, and infrastructure resilience, this is an ideal resource for all academicians, students, professionals, and researchers that are seeking new knowledge on the best methods and techniques for designing solid structural designs.
Download or read book Guidelines for earthquake resistant non engineered construction written by Arya, Anand S and published by UNESCO. This book was released on 2014-08-25 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Integrated Probabilistic Performance based Evaluation of Benchmark Reinforced Concrete Bridges written by Kevin Rory Mackie and published by . This book was released on 2008 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Design of Reinforced Concrete Buildings for Seismic Performance written by Mark Aschheim and published by CRC Press. This book was released on 2019-04-05 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The costs of inadequate earthquake engineering are huge, especially for reinforced concrete buildings. This book presents the principles of earthquake-resistant structural engineering, and uses the latest tools and techniques to give practical design guidance to address single or multiple seismic performance levels. It presents an elegant, simple and theoretically coherent design framework. Required strength is determined on the basis of an estimated yield displacement and desired limits of system ductility and drift demands. A simple deterministic approach is presented along with its elaboration into a probabilistic treatment that allows for design to limit annual probabilities of failure. The design method allows the seismic force resisting system to be designed on the basis of elastic analysis results, while nonlinear analysis is used for performance verification. Detailing requirements of ACI 318 and Eurocode 8 are presented. Students will benefit from the coverage of seismology, structural dynamics, reinforced concrete, and capacity design approaches, which allows the book to be used as a foundation text in earthquake engineering.
Download or read book Chemical Abstracts written by and published by . This book was released on 2002 with total page 2692 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Earthquake Engineering written by Yousef Bozorgnia and published by CRC Press. This book was released on 2004-05-11 with total page 958 pages. Available in PDF, EPUB and Kindle. Book excerpt: This multi-contributor book provides comprehensive coverage of earthquake engineering problems, an overview of traditional methods, and the scientific background on recent developments. It discusses computer methods on structural analysis and provides access to the recent design methodologies and serves as a reference for both professionals and res
Download or read book NEHRP Guidelines for the Seismic Rehabilitation of Buildings written by and published by . This book was released on 1997 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Abstract Journal in Earthquake Engineering written by and published by . This book was released on 1985 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Selected Papers written by Nathan Mortimore Newmark and published by . This book was released on 1976 with total page 908 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Designing for Earthquakes written by Federal Emergency Management Agency and published by www.Militarybookshop.CompanyUK. This book was released on 2006-12 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This full color manual is intended to explain the principles of seismic design for those without a technical background in engineering and seismology. The primary intended audience is that of architects, and includes practicing architects, architectural students and faculty in architectural schools who teach structures and seismic design. For this reason the text and graphics are focused on those aspects of seismic design that are important for the architect to know.