Download or read book Data Assimilation for the Geosciences written by Steven J. Fletcher and published by Elsevier. This book was released on 2017-03-10 with total page 978 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Assimilation for the Geosciences: From Theory to Application brings together all of the mathematical,statistical, and probability background knowledge needed to formulate data assimilation systems in one place. It includes practical exercises for understanding theoretical formulation and presents some aspects of coding the theory with a toy problem. The book also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to the atmosphere, oceans, as well as the land surface and other geophysical situations. It offers a comprehensive presentation of the subject, from basic principles to advanced methods, such as Particle Filters and Markov-Chain Monte-Carlo methods. Additionally, Data Assimilation for the Geosciences: From Theory to Application covers the applications of data assimilation techniques in various disciplines of the geosciences, making the book useful to students, teachers, and research scientists. Includes practical exercises, enabling readers to apply concepts in a theoretical formulation Offers explanations for how to code certain parts of the theory Presents a step-by-step guide on how, and why, data assimilation works and can be used
Download or read book Principles of Data Assimilation written by Seon Ki Park and published by Cambridge University Press. This book was released on 2022-09-29 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique combination of both theoretical and practical aspects of data assimilation with examples and exercises for students.
Download or read book Data Assimilation written by Kody Law and published by Springer. This book was released on 2015-09-05 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a systematic development of this interdisciplinary field, and at researchers from the geosciences, and a variety of other scientific fields, who use tools from data assimilation to combine data with time-dependent models. The numerous examples and illustrations make understanding of the theoretical underpinnings of data assimilation accessible. Furthermore, the examples, exercises and MATLAB software, make the book suitable for students in applied mathematics, either through a lecture course, or through self-study.
Download or read book The Statistical Physics of Data Assimilation and Machine Learning written by Henry D. I. Abarbanel and published by Cambridge University Press. This book was released on 2022-02-17 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of data assimilation and machine learning is introduced in an accessible manner for undergraduate and graduate students.
Download or read book Dynamic Data Assimilation written by John M. Lewis and published by Cambridge University Press. This book was released on 2006-08-03 with total page 601 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher description
Download or read book Computational Methods for Data Evaluation and Assimilation written by Dan Gabriel Cacuci and published by CRC Press. This book was released on 2016-04-19 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdiscipli
Download or read book Probabilistic Forecasting and Bayesian Data Assimilation written by Sebastian Reich and published by Cambridge University Press. This book was released on 2015-05-14 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.
Download or read book Data Assimilation Methods Algorithms and Applications written by Mark Asch and published by SIAM. This book was released on 2016-12-29 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data assimilation is an approach that combines observations and model output, with the objective of improving the latter. This book places data assimilation into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It provides a framework for, and insight into, the inverse problem nature of data assimilation, emphasizing why and not just how. Methods and diagnostics are emphasized, enabling readers to readily apply them to their own field of study. Readers will find a comprehensive guide that is accessible to nonexperts; numerous examples and diverse applications from a broad range of domains, including geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, economics and finance, and traffic control and urban planning; and the latest methods for advanced data assimilation, combining variational and statistical approaches.
Download or read book Data Assimilation and Control Theory and Applications in Life Sciences written by Axel Hutt and published by Frontiers Media SA. This book was released on 2019-08-16 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: The understanding of complex systems is a key element to predict and control the system’s dynamics. To gain deeper insights into the underlying actions of complex systems today, more and more data of diverse types are analyzed that mirror the systems dynamics, whereas system models are still hard to derive. Data assimilation merges both data and model to an optimal description of complex systems’ dynamics. The present eBook brings together both recent theoretical work in data assimilation and control and demonstrates applications in diverse research fields.
Download or read book Land Surface Observation Modeling and Data Assimilation written by Shunlin Liang and published by World Scientific. This book was released on 2013 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique in its ambitious and comprehensive coverage of earth system land surface characterization, from observation and modeling to data assimilation, including recent developments in theory and techniques, and novel application cases. The contributing authors are active research scientists, and many of them are internationally known leading experts in their areas, ensuring that the text is authoritative.This book comprises four parts that are logically connected from data, modeling, data assimilation integrating data and models to applications. Land data assimilation is the key focus of the book, which encompasses both theoretical and applied aspects with various novel methodologies and applications to the water cycle, carbon cycle, crop monitoring, and yield estimation.Readers can benefit from a state-of-the-art presentation of the latest tools and their usage for understanding earth system processes. Discussions in the book present and stimulate new challenges and questions facing today''s earth science and modeling communities.
Download or read book Principles of Data Assimilation written by Seon Ki Park and published by Cambridge University Press. This book was released on 2022-09-29 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data assimilation is theoretically founded on probability, statistics, control theory, information theory, linear algebra, and functional analysis. At the same time, data assimilation is a very practical subject, given its goal of estimating the posterior probability density function in realistic high-dimensional applications. This puts data assimilation at the intersection between the contrasting requirements of theory and practice. Based on over twenty years of teaching courses in data assimilation, Principles of Data Assimilation introduces a unique perspective that is firmly based on mathematical theories, but also acknowledges practical limitations of the theory. With the inclusion of numerous examples and practical case studies throughout, this new perspective will help students and researchers to competently interpret data assimilation results and to identify critical challenges of developing data assimilation algorithms. The benefit of information theory also introduces new pathways for further development, understanding, and improvement of data assimilation methods.
Download or read book Data Assimilation written by William Lahoz and published by Springer Science & Business Media. This book was released on 2010-07-23 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data assimilation methods were largely developed for operational weather forecasting, but in recent years have been applied to an increasing range of earth science disciplines. This book will set out the theoretical basis of data assimilation with contributions by top international experts in the field. Various aspects of data assimilation are discussed including: theory; observations; models; numerical weather prediction; evaluation of observations and models; assessment of future satellite missions; application to components of the Earth System. References are made to recent developments in data assimilation theory (e.g. Ensemble Kalman filter), and to novel applications of the data assimilation method (e.g. ionosphere, Mars data assimilation).
Download or read book Principles of Data Mining written by Max Bramer and published by Springer. This book was released on 2016-11-09 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift.
Download or read book Weather Radar written by Peter Meischner and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: With their images practically ubiquitious in the daily media, weather radar systems provide data not only for understanding weather systems and improving forecasts (especially critical for severe weather), but also for hydrological applications, flood warnings and climate research in which ground verification is needed for global precipitation measurements by satellites. This book offers an accessible overview of advanced methods, applications and modern research from the European perspective. An extensive introductory chapter summarizes the principles of weather radars and discusses the potential of modern radar systems, including Doppler and polarisation techniques, data processing, and error-correction methods. Addressing both specialist researchers and nonspecialists from related areas, this book will also be useful for graduate students planning to specialize in this field
Download or read book Statistical Methods for Climate Scientists written by Timothy DelSole and published by Cambridge University Press. This book was released on 2022-02-24 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to statistical methods for students in the climate sciences.
Download or read book Data Assimilation for Atmospheric Oceanic and Hydrologic Applications Vol II written by Seon Ki Park and published by Springer Science & Business Media. This book was released on 2013-05-22 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Download or read book Nonlinear Data Assimilation written by Peter Jan Van Leeuwen and published by Springer. This book was released on 2015-07-22 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.