EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Principles of Artificial Neural Networks

Download or read book Principles of Artificial Neural Networks written by Daniel Graupe and published by World Scientific. This book was released on 2013 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond. This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition OCo all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained. The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining."

Book Principles Of Artificial Neural Networks  3rd Edition

Download or read book Principles Of Artificial Neural Networks 3rd Edition written by Daniel Graupe and published by World Scientific. This book was released on 2013-07-31 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond.This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition — all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained.The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.

Book Process Neural Networks

    Book Details:
  • Author : Xingui He
  • Publisher : Springer Science & Business Media
  • Release : 2010-07-05
  • ISBN : 3540737626
  • Pages : 240 pages

Download or read book Process Neural Networks written by Xingui He and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.

Book Principles Of Artificial Neural Networks  2nd Edition

Download or read book Principles Of Artificial Neural Networks 2nd Edition written by Daniel Graupe and published by World Scientific. This book was released on 2007-04-05 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book should serve as a text for a university graduate course or for an advanced undergraduate course on neural networks in engineering and computer science departments. It should also serve as a self-study course for engineers and computer scientists in the industry. Covering major neural network approaches and architectures with the theories, this text presents detailed case studies for each of the approaches, accompanied with complete computer codes and the corresponding computed results. The case studies are designed to allow easy comparison of network performance to illustrate strengths and weaknesses of the different networks.

Book Artificial Neural Networks

    Book Details:
  • Author : P.J. Braspenning
  • Publisher : Springer Science & Business Media
  • Release : 1995-06-02
  • ISBN : 9783540594888
  • Pages : 320 pages

Download or read book Artificial Neural Networks written by P.J. Braspenning and published by Springer Science & Business Media. This book was released on 1995-06-02 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents carefully revised versions of tutorial lectures given during a School on Artificial Neural Networks for the industrial world held at the University of Limburg in Maastricht, Belgium. The major ANN architectures are discussed to show their powerful possibilities for empirical data analysis, particularly in situations where other methods seem to fail. Theoretical insight is offered by examining the underlying mathematical principles in a detailed, yet clear and illuminating way. Practical experience is provided by discussing several real-world applications in such areas as control, optimization, pattern recognition, software engineering, robotics, operations research, and CAM.

Book Artificial Intelligence

    Book Details:
  • Author : Michael Negnevitsky
  • Publisher : Pearson Education
  • Release : 2005
  • ISBN : 9780321204660
  • Pages : 454 pages

Download or read book Artificial Intelligence written by Michael Negnevitsky and published by Pearson Education. This book was released on 2005 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Keeping the maths to a minimum, Negnevitsky explains the principles of AI, demonstrates how systems are built, what they are useful for and how to choose the right tool for the job.

Book Neural Networks and Learning Machines

Download or read book Neural Networks and Learning Machines written by Simon S. Haykin and published by Prentice Hall. This book was released on 2009 with total page 938 pages. Available in PDF, EPUB and Kindle. Book excerpt: For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Renowned for its thoroughness and readability, this well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. Matlab codes used for the computer experiments in the text are available for download at: http: //www.pearsonhighered.com/haykin/ Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently.

Book Neural Network Design

Download or read book Neural Network Design written by Martin T. Hagan and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Principles of Artificial Neural Networks

Download or read book Principles of Artificial Neural Networks written by Daniel Graupe and published by World Scientific. This book was released on 1997-05-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is intended for a first-year graduate course on Artificial Neural Networks. It assumes no prior background in the subject and is directed to MS students in electrical engineering, computer science and related fields, with background in at least one programming language or in a programming tool such as Matlab, and who have taken the basic undergraduate classes in systems or in signal processing.

Book Artificial Intelligence in the Age of Neural Networks and Brain Computing

Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks

Book Neural Networks

    Book Details:
  • Author : Gérard Dreyfus
  • Publisher : Springer Science & Business Media
  • Release : 2005-11-25
  • ISBN : 3540288473
  • Pages : 509 pages

Download or read book Neural Networks written by Gérard Dreyfus and published by Springer Science & Business Media. This book was released on 2005-11-25 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts and edited to present a coherent and comprehensive, yet not redundant, practically oriented introduction.

Book Neural Smithing

    Book Details:
  • Author : Russell Reed
  • Publisher : MIT Press
  • Release : 1999-02-17
  • ISBN : 0262181908
  • Pages : 359 pages

Download or read book Neural Smithing written by Russell Reed and published by MIT Press. This book was released on 1999-02-17 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks are nonlinear mapping systems whose structure is loosely based on principles observed in the nervous systems of humans and animals. The basic idea is that massive systems of simple units linked together in appropriate ways can generate many complex and interesting behaviors. This book focuses on the subset of feedforward artificial neural networks called multilayer perceptrons (MLP). These are the mostly widely used neural networks, with applications as diverse as finance (forecasting), manufacturing (process control), and science (speech and image recognition). This book presents an extensive and practical overview of almost every aspect of MLP methodology, progressing from an initial discussion of what MLPs are and how they might be used to an in-depth examination of technical factors affecting performance. The book can be used as a tool kit by readers interested in applying networks to specific problems, yet it also presents theory and references outlining the last ten years of MLP research.

Book An Introduction to Neural Networks

Download or read book An Introduction to Neural Networks written by Kevin Gurney and published by CRC Press. This book was released on 2018-10-08 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Book Deep Learning Neural Networks  Design And Case Studies

Download or read book Deep Learning Neural Networks Design And Case Studies written by Daniel Graupe and published by World Scientific Publishing Company. This book was released on 2016-07-07 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning Neural Networks is the fastest growing field in machine learning. It serves as a powerful computational tool for solving prediction, decision, diagnosis, detection and decision problems based on a well-defined computational architecture. It has been successfully applied to a broad field of applications ranging from computer security, speech recognition, image and video recognition to industrial fault detection, medical diagnostics and finance.This comprehensive textbook is the first in the new emerging field. Numerous case studies are succinctly demonstrated in the text. It is intended for use as a one-semester graduate-level university text and as a textbook for research and development establishments in industry, medicine and financial research.

Book Neural Networks for Applied Sciences and Engineering

Download or read book Neural Networks for Applied Sciences and Engineering written by Sandhya Samarasinghe and published by CRC Press. This book was released on 2016-04-19 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in

Book Artificial Intelligence for Business

Download or read book Artificial Intelligence for Business written by Doug Rose and published by FT Press. This book was released on 2020-12-09 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Easy Introduction to Machine Learning (Ml) for Nontechnical People--In Business and Beyond Artificial Intelligence for Business is your plain-English guide to Artificial Intelligence (AI) and Machine Learning (ML): how they work, what they can and cannot do, and how to start profiting from them. Writing for nontechnical executives and professionals, Doug Rose demystifies AI/ML technology with intuitive analogies and explanations honed through years of teaching and consulting. Rose explains everything from early “expert systems” to advanced deep learning networks. First, Rose explains how AI and ML emerged, exploring pivotal early ideas that continue to influence the field. Next, he deepens your understanding of key ML concepts, showing how machines can create strategies and learn from mistakes. Then, Rose introduces current powerful neural networks: systems inspired by the structure and function of the human brain. He concludes by introducing leading AI applications, from automated customer interactions to event prediction. Throughout, Rose stays focused on business: applying these technologies to leverage new opportunities and solve real problems. Compare the ways a machine can learn, and explore current leading ML algorithms Start with the right problems, and avoid common AI/ML project mistakes Use neural networks to automate decision-making and identify unexpected patterns Help neural networks learn more quickly and effectively Harness AI chatbots, virtual assistants, virtual agents, and conversational AI applications

Book Neural Networks with R

    Book Details:
  • Author : Giuseppe Ciaburro
  • Publisher : Packt Publishing Ltd
  • Release : 2017-09-27
  • ISBN : 1788399412
  • Pages : 264 pages

Download or read book Neural Networks with R written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2017-09-27 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.