EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Primer of Applied Regression   Analysis of Variance 3E

Download or read book Primer of Applied Regression Analysis of Variance 3E written by Stanton A. Glantz and published by McGraw Hill Professional. This book was released on 2016-02-22 with total page 1212 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook on the use of advanced statistical methods in healthcare sciences Primer of Applied Regression & Analysis of Variance is a textbook especially created for medical, public health, and social and environmental science students who need applied (not theoretical) training in the use of statistical methods. The book has been acclaimed for its user-friendly style that makes complicated material understandable to readers who do not have an extensive math background. The text is packed with learning aids that include chapter-ending summaries and end-of-chapter problems that quickly assess mastery of the material. Examples from biological and health sciences are included to clarify and illustrate key points. The techniques discussed apply to a wide range of disciplines, including social and behavioral science as well as health and life sciences. Typical courses that would use this text include those that cover multiple linear regression and ANOVA. Four completely new chapters Completely updated software information and examples

Book Primer of Applied Regression   Analysis of Variance

Download or read book Primer of Applied Regression Analysis of Variance written by Stanton A. Glantz and published by McGraw Hill Professional. This book was released on 2012-09-01 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applicable for all statistics courses or practical use, teaches how to understand more advanced multivariate statistical methods, as well as how to use available software packages to get correct results. Study problems and examples culled from biomedical research illustrate key points. New to this edition: broadened coverage of ANOVA (traditional analysis of variance), the addition of ANCOVA (analysis of Co-Variance); updated treatment of available statistics software; 2 new chapters (Analysis of Variance Extensions and Mixing Regression and ANOVA: ANCOVA).

Book Multiple Regression and Beyond

Download or read book Multiple Regression and Beyond written by Timothy Z. Keith and published by Routledge. This book was released on 2019-01-14 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources

Book Applied Statistics

Download or read book Applied Statistics written by Olive Jean Dunn and published by . This book was released on 1987-05-11 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Descriptive statistics. Statistical inference: populations and samples. Inference from a single sample. Samples from two populations. One-way analysis of variance: fixed effects model. Hierarchical or nested design. Two-way analysis of variance: fixed effects model. Three-way analysis of variance: fixed effects model. Factorial designs with each factor at two levels. Variable effects models. Repeated measure designs. Linear regression and correlation. Multiple regression: the fixed X model. Multiple regression and correlation analysis. Analysis of covariance. Data screening.

Book Analysis of Variance  Design  and Regression

Download or read book Analysis of Variance Design and Regression written by Ronald Christensen and published by CRC Press. This book was released on 1996-06-01 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a comprehensive treatment of basic statistical methods and their applications. It focuses on the analysis of variance and regression, but also addressing basic ideas in experimental design and count data. The book has four connecting themes: similarity of inferential procedures, balanced one-way analysis of variance, comparison of models, and checking assumptions. Most inferential procedures are based on identifying a scalar parameter of interest, estimating that parameter, obtaining the standard error of the estimate, and identifying the appropriate reference distribution. Given these items, the inferential procedures are identical for various parameters. Balanced one-way analysis of variance has a simple, intuitive interpretation in terms of comparing the sample variance of the group means with the mean of the sample variance for each group. All balanced analysis of variance problems are considered in terms of computing sample variances for various group means. Comparing different models provides a structure for examining both balanced and unbalanced analysis of variance problems and regression problems. Checking assumptions is presented as a crucial part of every statistical analysis. Examples using real data from a wide variety of fields are used to motivate theory. Christensen consistently examines residual plots and presents alternative analyses using different transformation and case deletions. Detailed examination of interactions, three factor analysis of variance, and a split-plot design with four factors are included. The numerous exercises emphasize analysis of real data. Senior undergraduate and graduate students in statistics and graduate students in other disciplines using analysis of variance, design of experiments, or regression analysis will find this book useful.

Book Linear Models in Statistics

Download or read book Linear Models in Statistics written by Alvin C. Rencher and published by John Wiley & Sons. This book was released on 2008-01-07 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.

Book An Introduction to Applied Multivariate Analysis with R

Download or read book An Introduction to Applied Multivariate Analysis with R written by Brian Everitt and published by Springer Science & Business Media. This book was released on 2011-04-23 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.

Book Introduction to Mediation  Moderation  and Conditional Process Analysis  Second Edition

Download or read book Introduction to Mediation Moderation and Conditional Process Analysis Second Edition written by Andrew F. Hayes and published by Guilford Publications. This book was released on 2017-10-30 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been replaced by Introduction to Mediation, Moderation, and Conditional Process Analysis, Third Edition, ISBN 978-1-4625-4903-0.

Book Applied Multivariate Statistical Analysis

Download or read book Applied Multivariate Statistical Analysis written by Wolfgang Karl Härdle and published by Springer Nature. This book was released on with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book JMP for Basic Univariate and Multivariate Statistics

Download or read book JMP for Basic Univariate and Multivariate Statistics written by Ann Lehman and published by SAS Institute. This book was released on 2013 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to manage JMP data and perform the statistical analyses most commonly used in research in the social sciences and other fields with JMP for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists, Second Edition. Updated for JMP 10 and including new features on the statistical platforms, this book offers clearly written instructions to guide you through the basic concepts of research and data analysis, enabling you to easily perform statistical analyses and solve problems in real-world research. Step by step, you'll discover how to obtain descriptive and inferential statistics, summarize results clearly in a way that is suitable for publication, perform a wide range of JMP analyses, interpret the results, and more. Topics include screening data for errors selecting subsets computing the coefficient alpha reliability index (Cronbach's alpha) for a multiple-item scale performing bivariate analyses for all types of variables performing a one-way analysis of variance (ANOVA), multiple regression, and a one-way multivariate analysis of variance (MANOVA) Advanced topics include analyzing models with interactions and repeated measures. There is also comprehensive coverage of principle components with emphasis on graphical interpretation. This user-friendly book introduces researchers and students of the social sciences to JMP and to elementary statistical procedures, while the more advanced statistical procedures that are presented make it an invaluable reference guide for experienced researchers as well.

Book An Introduction to Categorical Data Analysis

Download or read book An Introduction to Categorical Data Analysis written by Alan Agresti and published by John Wiley & Sons. This book was released on 2018-10-11 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.

Book Multivariable Analysis

    Book Details:
  • Author : Mitchell H. Katz
  • Publisher : Cambridge University Press
  • Release : 2006-02-09
  • ISBN : 9780521549851
  • Pages : 228 pages

Download or read book Multivariable Analysis written by Mitchell H. Katz and published by Cambridge University Press. This book was released on 2006-02-09 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: How to perform and interpret multivariable analysis, using plain language rather than complex derivations.

Book Partial Least Squares Structural Equation Modeling  PLS SEM  Using R

Download or read book Partial Least Squares Structural Equation Modeling PLS SEM Using R written by Joseph F. Hair Jr. and published by Springer Nature. This book was released on 2021-11-03 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial least squares structural equation modeling (PLS-SEM) has become a standard approach for analyzing complex inter-relationships between observed and latent variables. Researchers appreciate the many advantages of PLS-SEM such as the possibility to estimate very complex models and the method’s flexibility in terms of data requirements and measurement specification. This practical open access guide provides a step-by-step treatment of the major choices in analyzing PLS path models using R, a free software environment for statistical computing, which runs on Windows, macOS, and UNIX computer platforms. Adopting the R software’s SEMinR package, which brings a friendly syntax to creating and estimating structural equation models, each chapter offers a concise overview of relevant topics and metrics, followed by an in-depth description of a case study. Simple instructions give readers the “how-tos” of using SEMinR to obtain solutions and document their results. Rules of thumb in every chapter provide guidance on best practices in the application and interpretation of PLS-SEM.

Book Applied Linear Regression

Download or read book Applied Linear Regression written by Sanford Weisberg and published by John Wiley & Sons. This book was released on 2013-06-07 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.

Book An R Companion to Applied Regression

Download or read book An R Companion to Applied Regression written by John Fox and published by SAGE Publications. This book was released on 2011 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a broad introduction to the R statistical environment in the context of applied regression analysis, which is typically studied by social scientists and others in a second course in applied statistics.

Book Multivariate Analysis of Ecological Data

Download or read book Multivariate Analysis of Ecological Data written by Michael Greenacre and published by Fundacion BBVA. This book was released on 2014-01-09 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: La diversidad biológica es fruto de la interacción entre numerosas especies, ya sean marinas, vegetales o animales, a la par que de los muchos factores limitantes que caracterizan el medio que habitan. El análisis multivariante utiliza las relaciones entre diferentes variables para ordenar los objetos de estudio según sus propiedades colectivas y luego clasificarlos; es decir, agrupar especies o ecosistemas en distintas clases compuestas cada una por entidades con propiedades parecidas. El fin último es relacionar la variabilidad biológica observada con las correspondientes características medioambientales. Multivariate Analysis of Ecological Data explica de manera completa y estructurada cómo analizar e interpretar los datos ecológicos observados sobre múltiples variables, tanto biológicos como medioambientales. Tras una introducción general a los datos ecológicos multivariantes y la metodología estadística, se abordan en capítulos específicos, métodos como aglomeración (clustering), regresión, biplots, escalado multidimensional, análisis de correspondencias (simple y canónico) y análisis log-ratio, con atención también a sus problemas de modelado y aspectos inferenciales. El libro plantea una serie de aplicaciones a datos reales derivados de investigaciones ecológicas, además de dos casos detallados que llevan al lector a apreciar los retos de análisis, interpretación y comunicación inherentes a los estudios a gran escala y los diseños complejos.

Book Understanding Clinical Research

Download or read book Understanding Clinical Research written by Renato D. Lopes and published by McGraw Hill Professional. This book was released on 2013-05-22 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete guide to understanding and applying clinical research results Ideal for both researchers and healthcare providers Understanding Clinical Research addresses both the operational challenges of clinical trials and the needs of clinicians to comprehend the nuances of research methods to accurately analyze study results. This timely resource covers all aspects of clinical trials--from study design and statistics to regulatory oversight--and it delivers a detailed yet streamlined overview of must-know research topics. The text features an accessible three-part organization that traces the evolution of clinical research and explains the bedrock principles and unique challenges of clinical experimentation and observational research. Reinforcing this content are real-life case examples--drawn from the authors' broad experience--that put chapter concepts into action and contribute to a working knowledge of integral research techniques. FEATURES: The most definitive guide to promoting excellence in clinical research, designed to empower healthcare providers to assess a study's strengths and weaknesses with confidence and apply this knowledge to optimize patient outcomes In-depth coverage of fundamental research methods and protocols from preeminent authorities provides readers with an instructive primer and a springboard for ongoing clinical research education Clear, comprehensive three-part organization: Section One: Evolution of Clinical Research offers a succinct history of clinical trials, drug regulations, and the role of the FDA while covering the impact of information technology and academic research organizations Section Two: Principles of Clinical Experimentation takes you through the typical phases of clinical trials in the development of medical products, from initial human subject research to postapproval surveillance studies Section Three: Observational Research highlights the underlying principles, pitfalls, and methods for case-control studies, cohort studies, registries, and subgroup analyses within randomized trials