Download or read book Implementing Derivatives Models written by Les Clewlow and published by . This book was released on 1998 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Ruin Probabilities written by S?ren Asmussen and published by World Scientific. This book was released on 2010 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives a comprehensive treatment of the classical and modern ruin probability theory. Some of the topics are Lundberg's inequality, the Cramr?Lundberg approximation, exact solutions, other approximations (e.g., for heavy-tailed claim size distributions), finite horizon ruin probabilities, extensions of the classical compound Poisson model to allow for reserve-dependent premiums, Markov-modulation, periodicity, change of measure techniques, phase-type distributions as a computational vehicle and the connection to other applied probability areas, like queueing theory. In this substantially updated and extended second version, new topics include stochastic control, fluctuation theory for Levy processes, Gerber?Shiu functions and dependence.
Download or read book Numerical Methods and Optimization in Finance written by Manfred Gilli and published by Academic Press. This book was released on 2019-08-16 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance.
Download or read book The Complete Guide to Option Pricing Formulas written by Espen Gaarder Haug and published by Professional Finance & Investment. This book was released on 2007-01-08 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accompanying CD-ROM contains ... "all pricing formulas, with VBA code and ready-to-use Excel spreadsheets and 3D charts for Greeks (or Option Sensitivities)."--Jacket.
Download or read book Dynamic Hedging written by Nassim Nicholas Taleb and published by John Wiley & Sons. This book was released on 1997-01-14 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Destined to become a market classic, Dynamic Hedging is the only practical reference in exotic options hedgingand arbitrage for professional traders and money managers Watch the professionals. From central banks to brokerages to multinationals, institutional investors are flocking to a new generation of exotic and complex options contracts and derivatives. But the promise of ever larger profits also creates the potential for catastrophic trading losses. Now more than ever, the key to trading derivatives lies in implementing preventive risk management techniques that plan for and avoid these appalling downturns. Unlike other books that offer risk management for corporate treasurers, Dynamic Hedging targets the real-world needs of professional traders and money managers. Written by a leading options trader and derivatives risk advisor to global banks and exchanges, this book provides a practical, real-world methodology for monitoring and managing all the risks associated with portfolio management. Nassim Nicholas Taleb is the founder of Empirica Capital LLC, a hedge fund operator, and a fellow at the Courant Institute of Mathematical Sciences of New York University. He has held a variety of senior derivative trading positions in New York and London and worked as an independent floor trader in Chicago. Dr. Taleb was inducted in February 2001 in the Derivatives Strategy Hall of Fame. He received an MBA from the Wharton School and a Ph.D. from University Paris-Dauphine.
Download or read book Nonlinear Option Pricing written by Julien Guyon and published by CRC Press. This book was released on 2013-12-19 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: New Tools to Solve Your Option Pricing ProblemsFor nonlinear PDEs encountered in quantitative finance, advanced probabilistic methods are needed to address dimensionality issues. Written by two leaders in quantitative research-including Risk magazine's 2013 Quant of the Year-Nonlinear Option Pricing compares various numerical methods for solving hi
Download or read book Finite Difference Methods in Financial Engineering written by Daniel J. Duffy and published by John Wiley & Sons. This book was released on 2013-10-28 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Download or read book Numerical Methods in Finance and Economics written by Paolo Brandimarte and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: A state-of-the-art introduction to the powerful mathematical and statistical tools used in the field of finance The use of mathematical models and numerical techniques is a practice employed by a growing number of applied mathematicians working on applications in finance. Reflecting this development, Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition bridges the gap between financial theory and computational practice while showing readers how to utilize MATLAB?--the powerful numerical computing environment--for financial applications. The author provides an essential foundation in finance and numerical analysis in addition to background material for students from both engineering and economics perspectives. A wide range of topics is covered, including standard numerical analysis methods, Monte Carlo methods to simulate systems affected by significant uncertainty, and optimization methods to find an optimal set of decisions. Among this book's most outstanding features is the integration of MATLAB?, which helps students and practitioners solve relevant problems in finance, such as portfolio management and derivatives pricing. This tutorial is useful in connecting theory with practice in the application of classical numerical methods and advanced methods, while illustrating underlying algorithmic concepts in concrete terms. Newly featured in the Second Edition: * In-depth treatment of Monte Carlo methods with due attention paid to variance reduction strategies * New appendix on AMPL in order to better illustrate the optimization models in Chapters 11 and 12 * New chapter on binomial and trinomial lattices * Additional treatment of partial differential equations with two space dimensions * Expanded treatment within the chapter on financial theory to provide a more thorough background for engineers not familiar with finance * New coverage of advanced optimization methods and applications later in the text Numerical Methods in Finance and Economics: A MATLAB?-Based Introduction, Second Edition presents basic treatments and more specialized literature, and it also uses algebraic languages, such as AMPL, to connect the pencil-and-paper statement of an optimization model with its solution by a software library. Offering computational practice in both financial engineering and economics fields, this book equips practitioners with the necessary techniques to measure and manage risk.
Download or read book Numerical Partial Differential Equations in Finance Explained written by Karel in 't Hout and published by Springer. This book was released on 2017-09-02 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a first, basic introduction into the valuation of financial options via the numerical solution of partial differential equations (PDEs). It provides readers with an easily accessible text explaining main concepts, models, methods and results that arise in this approach. In keeping with the series style, emphasis is placed on intuition as opposed to full rigor, and a relatively basic understanding of mathematics is sufficient. The book provides a wealth of examples, and ample numerical experiments are givento illustrate the theory. The main focus is on one-dimensional financial PDEs, notably the Black-Scholes equation. The book concludes with a detailed discussion of the important step towards two-dimensional PDEs in finance.
Download or read book Computational Sciences Modelling Computing and Soft Computing written by Ashish Awasthi and published by Springer Nature. This book was released on 2021-07-27 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised and selected papers of the First International Conference on Computational Sciences - Modelling, Computing and Soft Computing, held in Kozhikode, Kerala, India, in September 2020. The 15 full papers and 6 short papers presented were thoroughly reviewed and selected from the 150 submissions. They are organized in the topical secions on computing; soft computing; general computing; modelling.
Download or read book Energy Power Risk written by George Levy and published by Emerald Group Publishing. This book was released on 2018-12-10 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book describes both mathematical and computational tools for energy and power risk management, deriving from first principles stochastic models for simulating commodity risk and how to design robust C++ to implement these models.
Download or read book Financial Instrument Pricing Using C written by Daniel J. Duffy and published by John Wiley & Sons. This book was released on 2013-10-23 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the best languages for the development of financial engineering and instrument pricing applications is C++. This book has several features that allow developers to write robust, flexible and extensible software systems. The book is an ANSI/ISO standard, fully object-oriented and interfaces with many third-party applications. It has support for templates and generic programming, massive reusability using templates (?write once?) and support for legacy C applications. In this book, author Daniel J. Duffy brings C++ to the next level by applying it to the design and implementation of classes, libraries and applications for option and derivative pricing models. He employs modern software engineering techniques to produce industrial-strength applications: Using the Standard Template Library (STL) in finance Creating your own template classes and functions Reusable data structures for vectors, matrices and tensors Classes for numerical analysis (numerical linear algebra ?) Solving the Black Scholes equations, exact and approximate solutions Implementing the Finite Difference Method in C++ Integration with the ?Gang of Four? Design Patterns Interfacing with Excel (output and Add-Ins) Financial engineering and XML Cash flow and yield curves Included with the book is a CD containing the source code in the Datasim Financial Toolkit. You can use this to get up to speed with your C++ applications by reusing existing classes and libraries. 'Unique... Let's all give a warm welcome to modern pricing tools.' -- Paul Wilmott, mathematician, author and fund manager
Download or read book Numerical Methods in Computational Finance written by Daniel J. Duffy and published by John Wiley & Sons. This book was released on 2022-03-21 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users. Part A Mathematical Foundation for One-Factor Problems Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance. Part B Mathematical Foundation for Two-Factor Problems Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks. Part C The Foundations of the Finite Difference Method (FDM) Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes. Part D Advanced Finite Difference Schemes for Two-Factor Problems Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail. Part E Test Cases in Computational Finance Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems. This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering. More on computational finance and the author’s online courses, see www.datasim.nl.
Download or read book Pricing Derivatives by Simulation written by Dessislava A. Pachamanova and published by John Wiley & Sons. This book was released on 2011-04-27 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Mathematical Models of Financial Derivatives written by Yue-Kuen Kwok and published by Springer Science & Business Media. This book was released on 2008-07-10 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition, now featuring new material, focuses on the valuation principles that are common to most derivative securities. A wide range of financial derivatives commonly traded in the equity and fixed income markets are analysed, emphasising aspects of pricing, hedging and practical usage. This second edition features additional emphasis on the discussion of Ito calculus and Girsanovs Theorem, and the risk-neutral measure and equivalent martingale pricing approach. A new chapter on credit risk models and pricing of credit derivatives has been added. Up-to-date research results are provided by many useful exercises.
Download or read book Numerical Algorithms written by Justin Solomon and published by CRC Press. This book was released on 2015-06-24 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig
Download or read book Financial Modelling in Python written by Shayne Fletcher and published by John Wiley & Sons. This book was released on 2010-10-28 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Fletcher and Gardner have created a comprehensive resource that will be of interest not only to those working in the field of finance, but also to those using numerical methods in other fields such as engineering, physics, and actuarial mathematics. By showing how to combine the high-level elegance, accessibility, and flexibility of Python, with the low-level computational efficiency of C++, in the context of interesting financial modeling problems, they have provided an implementation template which will be useful to others seeking to jointly optimize the use of computational and human resources. They document all the necessary technical details required in order to make external numerical libraries available from within Python, and they contribute a useful library of their own, which will significantly reduce the start-up costs involved in building financial models. This book is a must read for all those with a need to apply numerical methods in the valuation of financial claims." –David Louton, Professor of Finance, Bryant University This book is directed at both industry practitioners and students interested in designing a pricing and risk management framework for financial derivatives using the Python programming language. It is a practical book complete with working, tested code that guides the reader through the process of building a flexible, extensible pricing framework in Python. The pricing frameworks' loosely coupled fundamental components have been designed to facilitate the quick development of new models. Concrete applications to real-world pricing problems are also provided. Topics are introduced gradually, each building on the last. They include basic mathematical algorithms, common algorithms from numerical analysis, trade, market and event data model representations, lattice and simulation based pricing, and model development. The mathematics presented is kept simple and to the point. The book also provides a host of information on practical technical topics such as C++/Python hybrid development (embedding and extending) and techniques for integrating Python based programs with Microsoft Excel.