Download or read book Pretrained Transformers for Text Ranking written by Jimmy Lin and published by Springer Nature. This book was released on 2022-06-01 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing (NLP) applications.This book provides an overview of text ranking with neural network architectures known as transformers, of which BERT (Bidirectional Encoder Representations from Transformers) is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in NLP, information retrieval (IR), and beyond. This book provides a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. It covers a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. Two themes pervade the book: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this book also attempts to prognosticate where the field is heading.
Download or read book Advances in Information Retrieval written by Djoerd Hiemstra and published by Springer Nature. This book was released on 2021-03-26 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set LNCS 12656 and 12657 constitutes the refereed proceedings of the 43rd European Conference on IR Research, ECIR 2021, held virtually in March/April 2021, due to the COVID-19 pandemic. The 50 full papers presented together with 11 reproducibility papers, 39 short papers, 15 demonstration papers, 12 CLEF lab descriptions papers, 5 doctoral consortium papers, 5 workshop abstracts, and 8 tutorials abstracts were carefully reviewed and selected from 436 submissions. The accepted contributions cover the state of the art in IR: deep learning-based information retrieval techniques, use of entities and knowledge graphs, recommender systems, retrieval methods, information extraction, question answering, topic and prediction models, multimedia retrieval, and much more.
Download or read book The Probabilistic Relevance Framework written by Stephen Robertson and published by Now Publishers Inc. This book was released on 2009 with total page 69 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Probabilistic Relevance Framework (PRF) is a formal framework for document retrieval, grounded in work done in the 1970-80s, which led to the development of one of the most successful text-retrieval algorithms, BM25. In recent years, research in the PRF has yielded new retrieval models capable of taking into account structure and link-graph information. Again, this has led to one of the most successful web-search and corporate-search algorithms, BM25F. The Probabilistic Relevance Framework: BM25 and Beyond presents the PRF from a conceptual point of view, describing the probabilistic modelling assumptions behind the framework and the different ranking algorithms that result from its application: the binary independence model, relevance feedback models, BM25, BM25F. Besides presenting a full derivation of the PRF ranking algorithms, it provides many insights about document retrieval in general, and points to many open challenges in this area. It also discusses the relation between the PRF and other statistical models for IR, and covers some related topics, such as the use of non-textual features, and parameter optimization for models with free parameters. The Probabilistic Relevance Framework: BM25 and Beyond is self-contained and accessible to anyone with basic knowledge of probability and inference
Download or read book Natural Language Processing with Transformers Revised Edition written by Lewis Tunstall and published by "O'Reilly Media, Inc.". This book was released on 2022-05-26 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction in 2017, transformers have quickly become the dominant architecture for achieving state-of-the-art results on a variety of natural language processing tasks. If you're a data scientist or coder, this practical book -now revised in full color- shows you how to train and scale these large models using Hugging Face Transformers, a Python-based deep learning library. Transformers have been used to write realistic news stories, improve Google Search queries, and even create chatbots that tell corny jokes. In this guide, authors Lewis Tunstall, Leandro von Werra, and Thomas Wolf, among the creators of Hugging Face Transformers, use a hands-on approach to teach you how transformers work and how to integrate them in your applications. You'll quickly learn a variety of tasks they can help you solve. Build, debug, and optimize transformer models for core NLP tasks, such as text classification, named entity recognition, and question answering Learn how transformers can be used for cross-lingual transfer learning Apply transformers in real-world scenarios where labeled data is scarce Make transformer models efficient for deployment using techniques such as distillation, pruning, and quantization Train transformers from scratch and learn how to scale to multiple GPUs and distributed environments
Download or read book An Introduction to Neural Information Retrieval written by Bhaskar Mitra and published by Foundations and Trends (R) in Information Retrieval. This book was released on 2018-12-23 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficient Query Processing for Scalable Web Search will be a valuable reference for researchers and developers working on This tutorial provides an accessible, yet comprehensive, overview of the state-of-the-art of Neural Information Retrieval.
Download or read book Practical Weak Supervision written by Wee Hyong Tok and published by "O'Reilly Media, Inc.". This book was released on 2021-09-30 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most data scientists and engineers today rely on quality labeled data to train machine learning models. But building a training set manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Wee Hyong Tok, Amit Bahree, and Senja Filipi show you how to create products using weakly supervised learning models. You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies have pursued ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build. Get up to speed on the field of weak supervision, including ways to use it as part of the data science process Use Snorkel AI for weak supervision and data programming Get code examples for using Snorkel to label text and image datasets Use a weakly labeled dataset for text and image classification Learn practical considerations for using Snorkel with large datasets and using Spark clusters to scale labeling
Download or read book Text Analytics with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2016-11-30 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: Derive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization. Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems. What You Will Learn: Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summarization, and cluster popular movie synopses and analyze the sentiment of movie reviews Implement Python and popular open source libraries in NLP and text analytics, such as the natural language toolkit (nltk), gensim, scikit-learn, spaCy and Pattern Who This Book Is For : IT professionals, analysts, developers, linguistic experts, data scientists, and anyone with a keen interest in linguistics, analytics, and generating insights from textual data
Download or read book Getting Started with Google BERT written by Sudharsan Ravichandiran and published by Packt Publishing Ltd. This book was released on 2021-01-22 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kickstart your NLP journey by exploring BERT and its variants such as ALBERT, RoBERTa, DistilBERT, VideoBERT, and more with Hugging Face's transformers library Key FeaturesExplore the encoder and decoder of the transformer modelBecome well-versed with BERT along with ALBERT, RoBERTa, and DistilBERTDiscover how to pre-train and fine-tune BERT models for several NLP tasksBook Description BERT (bidirectional encoder representations from transformer) has revolutionized the world of natural language processing (NLP) with promising results. This book is an introductory guide that will help you get to grips with Google's BERT architecture. With a detailed explanation of the transformer architecture, this book will help you understand how the transformer’s encoder and decoder work. You’ll explore the BERT architecture by learning how the BERT model is pre-trained and how to use pre-trained BERT for downstream tasks by fine-tuning it for NLP tasks such as sentiment analysis and text summarization with the Hugging Face transformers library. As you advance, you’ll learn about different variants of BERT such as ALBERT, RoBERTa, and ELECTRA, and look at SpanBERT, which is used for NLP tasks like question answering. You'll also cover simpler and faster BERT variants based on knowledge distillation such as DistilBERT and TinyBERT. The book takes you through MBERT, XLM, and XLM-R in detail and then introduces you to sentence-BERT, which is used for obtaining sentence representation. Finally, you'll discover domain-specific BERT models such as BioBERT and ClinicalBERT, and discover an interesting variant called VideoBERT. By the end of this BERT book, you’ll be well-versed with using BERT and its variants for performing practical NLP tasks. What you will learnUnderstand the transformer model from the ground upFind out how BERT works and pre-train it using masked language model (MLM) and next sentence prediction (NSP) tasksGet hands-on with BERT by learning to generate contextual word and sentence embeddingsFine-tune BERT for downstream tasksGet to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT modelsGet the hang of the BERT models based on knowledge distillationUnderstand cross-lingual models such as XLM and XLM-RExplore Sentence-BERT, VideoBERT, and BARTWho this book is for This book is for NLP professionals and data scientists looking to simplify NLP tasks to enable efficient language understanding using BERT. A basic understanding of NLP concepts and deep learning is required to get the best out of this book.
Download or read book Representation Learning for Natural Language Processing written by Zhiyuan Liu and published by Springer Nature. This book was released on 2020-07-03 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Download or read book Preference Learning written by Johannes Fürnkranz and published by Springer Science & Business Media. This book was released on 2010-11-19 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction. This is the first book dedicated to this topic, and the treatment is comprehensive. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation. The first half of the book is organized into parts on label ranking, instance ranking, and object ranking; while the second half is organized into parts on applications of preference learning in multiattribute domains, information retrieval, and recommender systems. The book will be of interest to researchers and practitioners in artificial intelligence, in particular machine learning and data mining, and in fields such as multicriteria decision-making and operations research.
Download or read book Dual Learning written by Tao Qin and published by Springer Nature. This book was released on 2020-11-13 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many AI (and machine learning) tasks present in dual forms, e.g., English-to-Chinese translation vs. Chinese-to-English translation, speech recognition vs. speech synthesis,question answering vs. question generation, and image classification vs. image generation. Dual learning is a new learning framework that leverages the primal-dual structure of AI tasks to obtain effective feedback or regularization signals in order to enhance the learning/inference process. Since it was first introduced four years ago, the concept has attracted considerable attention in multiple fields, and been proven effective in numerous applications, such as machine translation, image-to-image translation, speech synthesis and recognition, (visual) question answering and generation, image captioning and generation, and code summarization and generation. Offering a systematic and comprehensive overview of dual learning, this book enables interested researchers (both established and newcomers) and practitioners to gain a better understanding of the state of the art in the field. It also provides suggestions for further reading and tools to help readers advance the area. The book is divided into five parts. The first part gives a brief introduction to machine learning and deep learning. The second part introduces the algorithms based on the dual reconstruction principle using machine translation, image translation, speech processing and other NLP/CV tasks as the demo applications. It covers algorithms, such as dual semi-supervised learning, dual unsupervised learning and multi-agent dual learning. In the context of image translation, it introduces algorithms including CycleGAN, DualGAN, DiscoGAN cdGAN and more recent techniques/applications. The third part presents various work based on the probability principle, including dual supervised learning and dual inference based on the joint-probability principle and dual semi-supervised learning based on the marginal-probability principle. The fourth part reviews various theoretical studies on dual learning and discusses its connections to other learning paradigms. The fifth part provides a summary and suggests future research directions.
Download or read book Dependency Parsing written by Sandra Kübler and published by Morgan & Claypool Publishers. This book was released on 2009 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dependency-based methods for syntactic parsing have become increasingly popular in natural language processing in recent years. This book gives a thorough introduction to the methods that are most widely used today. After an introduction to dependency grammar and dependency parsing, followed by a formal characterization of the dependency parsing problem, the book surveys the three major classes of parsing models that are in current use: transition-based, graph-based, and grammar-based models. It continues with a chapter on evaluation and one on the comparison of different methods, and it closes with a few words on current trends and future prospects of dependency parsing. The book presupposes a knowledge of basic concepts in linguistics and computer science, as well as some knowledge of parsing methods for constituency-based representations. Table of Contents: Introduction / Dependency Parsing / Transition-Based Parsing / Graph-Based Parsing / Grammar-Based Parsing / Evaluation / Comparison / Final Thoughts
Download or read book Speech Language Processing written by Dan Jurafsky and published by Pearson Education India. This book was released on 2000-09 with total page 912 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Predicting Structured Data written by Neural Information Processing Systems Foundation and published by MIT Press. This book was released on 2007 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.
Download or read book Practical Machine Learning with Rust written by Joydeep Bhattacharjee and published by Apress. This book was released on 2019-12-10 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud. After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will Learn Write machine learning algorithms in RustUse Rust libraries for different tasks in machine learningCreate concise Rust packages for your machine learning applicationsImplement NLP and computer vision in RustDeploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust.
Download or read book Neural Network Methods in Natural Language Processing written by Yoav Goldberg and published by Morgan & Claypool Publishers. This book was released on 2017-04-17 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a family of powerful machine learning models and this book focuses on their application to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.
Download or read book Automatic Text Simplification written by Horacio Saggion and published by Springer Nature. This book was released on 2022-05-31 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thanks to the availability of texts on the Web in recent years, increased knowledge and information have been made available to broader audiences. However, the way in which a text is written—its vocabulary, its syntax—can be difficult to read and understand for many people, especially those with poor literacy, cognitive or linguistic impairment, or those with limited knowledge of the language of the text. Texts containing uncommon words or long and complicated sentences can be difficult to read and understand by people as well as difficult to analyze by machines. Automatic text simplification is the process of transforming a text into another text which, ideally conveying the same message, will be easier to read and understand by a broader audience. The process usually involves the replacement of difficult or unknown phrases with simpler equivalents and the transformation of long and syntactically complex sentences into shorter and less complex ones. Automatic text simplification, a research topic which started 20 years ago, now has taken on a central role in natural language processing research not only because of the interesting challenges it posesses but also because of its social implications. This book presents past and current research in text simplification, exploring key issues including automatic readability assessment, lexical simplification, and syntactic simplification. It also provides a detailed account of machine learning techniques currently used in simplification, describes full systems designed for specific languages and target audiences, and offers available resources for research and development together with text simplification evaluation techniques.